{"title":"DPAD: Data Poisoning Attack Defense Mechanism for federated learning-based system","authors":"Santanu Basak, Kakali Chatterjee","doi":"10.1016/j.compeleceng.2024.109893","DOIUrl":null,"url":null,"abstract":"<div><div>The Federated Learning (FL)-based approaches are increasing rapidly for different areas, such as home automation, smart healthcare, smart cars, etc. In FL, multiple users participate collaboratively and distributively to construct a global model without sharing raw data. The FL-based system resolves several issues of central server-based machine learning approaches, such as data availability, maintaining user privacy, etc. Still, some issues exist, such as data poisoning attacks and re-identification attacks. This paper proposes a Data Poisoning Attack Defense (DPAD) Mechanism that detects and defends against the data poisoning attack efficiently and secures the aggregation process for the Federated Learning-based systems. The DPAD verifies each client’s updates using an audit mechanism that decides whether a local update is considered for aggregation. The experimental results show the effectiveness of the attack and the power of the DPAD mechanism compared with the state-of-the-art methods.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"121 ","pages":"Article 109893"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004579062400819X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
DPAD: Data Poisoning Attack Defense Mechanism for federated learning-based system
The Federated Learning (FL)-based approaches are increasing rapidly for different areas, such as home automation, smart healthcare, smart cars, etc. In FL, multiple users participate collaboratively and distributively to construct a global model without sharing raw data. The FL-based system resolves several issues of central server-based machine learning approaches, such as data availability, maintaining user privacy, etc. Still, some issues exist, such as data poisoning attacks and re-identification attacks. This paper proposes a Data Poisoning Attack Defense (DPAD) Mechanism that detects and defends against the data poisoning attack efficiently and secures the aggregation process for the Federated Learning-based systems. The DPAD verifies each client’s updates using an audit mechanism that decides whether a local update is considered for aggregation. The experimental results show the effectiveness of the attack and the power of the DPAD mechanism compared with the state-of-the-art methods.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.