{"title":"Al掺杂对Ni-Mn-In Heusler合金磁性、磁结构和磁热性能的影响","authors":"Milad Arman , Farzad Shahri , Reza Gholamipour , Sajad Sohrabi","doi":"10.1016/j.ssc.2024.115767","DOIUrl":null,"url":null,"abstract":"<div><div>The present study aimed at investigating the effect of Al doping (0–1.5 at. %) on the magnetic, magneto-structural, and magnetocaloric properties of the Ni<sub>50</sub>Mn<sub>34</sub>In<sub>16</sub> Heusler alloy with diameters of 2 mm prepared using a suction-casting technique. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and magnetic force microscopy (MFM) were employed to identify the structure, microstructure, and magnetic domain distribution of the samples. Also, phase transformation behavior was characterized using differential scanning calorimetry (DSC) across a temperature range of 200–350 K. A SQUID Quantum Design MPMS®3 was employed to evaluate the thermo-magnetic properties of the samples during heating and cooling cycles between 175 and 375 K under a constant magnetic field of 2 T. Finally, A cryostat-equipped vibrating sample magnetometer (VSM) was used to analyze the magnetic and magnetocaloric properties around the magneto-structural and magnetic phase transition temperature, up to a magnetic field of 1.75 T. Based on the results obtained, it was shown that doping 0.5 at. % Al increases magnetization, magnetic entropy change (<span><math><mrow><mrow><mo>Δ</mo><msub><mi>S</mi><mi>M</mi></msub></mrow><mo>)</mo></mrow></math></span> and adiabatic temperature change (<span><math><mrow><mrow><mo>Δ</mo><msub><mi>T</mi><mrow><mi>a</mi><mi>d</mi></mrow></msub></mrow><mo>)</mo></mrow></math></span> to 79 emu/g, 3.86 J/kg.K, and 1.14 K respectively, which can be attributed to the pre-martensitic phase transformation. However, by further Al substitution up to 1.5 at. %, the magneto-structural transformation temperatures shift toward higher values, while magnetization, <span><math><mrow><mo>Δ</mo><msub><mi>S</mi><mi>M</mi></msub></mrow></math></span>, and <span><math><mrow><mo>Δ</mo><msub><mi>T</mi><mrow><mi>a</mi><mi>d</mi></mrow></msub></mrow></math></span> decrease.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"396 ","pages":"Article 115767"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Al doping on the magnetic, magneto-structural, and magnetocaloric properties of Ni-Mn-In Heusler alloys\",\"authors\":\"Milad Arman , Farzad Shahri , Reza Gholamipour , Sajad Sohrabi\",\"doi\":\"10.1016/j.ssc.2024.115767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present study aimed at investigating the effect of Al doping (0–1.5 at. %) on the magnetic, magneto-structural, and magnetocaloric properties of the Ni<sub>50</sub>Mn<sub>34</sub>In<sub>16</sub> Heusler alloy with diameters of 2 mm prepared using a suction-casting technique. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and magnetic force microscopy (MFM) were employed to identify the structure, microstructure, and magnetic domain distribution of the samples. Also, phase transformation behavior was characterized using differential scanning calorimetry (DSC) across a temperature range of 200–350 K. A SQUID Quantum Design MPMS®3 was employed to evaluate the thermo-magnetic properties of the samples during heating and cooling cycles between 175 and 375 K under a constant magnetic field of 2 T. Finally, A cryostat-equipped vibrating sample magnetometer (VSM) was used to analyze the magnetic and magnetocaloric properties around the magneto-structural and magnetic phase transition temperature, up to a magnetic field of 1.75 T. Based on the results obtained, it was shown that doping 0.5 at. % Al increases magnetization, magnetic entropy change (<span><math><mrow><mrow><mo>Δ</mo><msub><mi>S</mi><mi>M</mi></msub></mrow><mo>)</mo></mrow></math></span> and adiabatic temperature change (<span><math><mrow><mrow><mo>Δ</mo><msub><mi>T</mi><mrow><mi>a</mi><mi>d</mi></mrow></msub></mrow><mo>)</mo></mrow></math></span> to 79 emu/g, 3.86 J/kg.K, and 1.14 K respectively, which can be attributed to the pre-martensitic phase transformation. However, by further Al substitution up to 1.5 at. %, the magneto-structural transformation temperatures shift toward higher values, while magnetization, <span><math><mrow><mo>Δ</mo><msub><mi>S</mi><mi>M</mi></msub></mrow></math></span>, and <span><math><mrow><mo>Δ</mo><msub><mi>T</mi><mrow><mi>a</mi><mi>d</mi></mrow></msub></mrow></math></span> decrease.</div></div>\",\"PeriodicalId\":430,\"journal\":{\"name\":\"Solid State Communications\",\"volume\":\"396 \",\"pages\":\"Article 115767\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038109824003442\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824003442","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在探讨Al掺杂(0-1.5 at)的影响。采用吸铸技术制备了直径为2mm的Ni50Mn34In16 Heusler合金,并对其磁性、磁结构和磁热性能进行了研究。采用x射线衍射(XRD)、场发射扫描电镜(FE-SEM)和磁力显微镜(MFM)对样品的结构、微观结构和磁畴分布进行了表征。此外,用差示扫描量热法(DSC)在200-350 K的温度范围内表征了相变行为。鱿鱼量子设计mpm®3来评估样品的热磁特性在加热和冷却周期之间的恒定磁场下175和375 K 2 t .最后,cryostat-equipped振动样品磁强计(VSM)被用来分析magneto-structural周围的磁场和磁致热的特性和磁相变温度,磁场的1.75 t .根据获得的结果,结果表明,掺杂0.5。Al增加磁化强度,磁熵变化(ΔSM)和绝热温度变化(ΔTad),达到79 emu/g, 3.86 J/kg。K和1.14 K,可归因于马氏体前相变。然而,通过进一步的Al取代高达1.5 at。%时,磁结构转变温度向较高值移动,磁化强度、ΔSM和ΔTad减小。
Effect of Al doping on the magnetic, magneto-structural, and magnetocaloric properties of Ni-Mn-In Heusler alloys
The present study aimed at investigating the effect of Al doping (0–1.5 at. %) on the magnetic, magneto-structural, and magnetocaloric properties of the Ni50Mn34In16 Heusler alloy with diameters of 2 mm prepared using a suction-casting technique. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and magnetic force microscopy (MFM) were employed to identify the structure, microstructure, and magnetic domain distribution of the samples. Also, phase transformation behavior was characterized using differential scanning calorimetry (DSC) across a temperature range of 200–350 K. A SQUID Quantum Design MPMS®3 was employed to evaluate the thermo-magnetic properties of the samples during heating and cooling cycles between 175 and 375 K under a constant magnetic field of 2 T. Finally, A cryostat-equipped vibrating sample magnetometer (VSM) was used to analyze the magnetic and magnetocaloric properties around the magneto-structural and magnetic phase transition temperature, up to a magnetic field of 1.75 T. Based on the results obtained, it was shown that doping 0.5 at. % Al increases magnetization, magnetic entropy change ( and adiabatic temperature change ( to 79 emu/g, 3.86 J/kg.K, and 1.14 K respectively, which can be attributed to the pre-martensitic phase transformation. However, by further Al substitution up to 1.5 at. %, the magneto-structural transformation temperatures shift toward higher values, while magnetization, , and decrease.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.