添加Mn形成的晶界相对Cu-6Ni-1.3Si均质合金疲劳裂纹萌生和扩展的影响

IF 5.7 2区 材料科学 Q1 ENGINEERING, MECHANICAL
Masahiro Goto , Takaei Yamamoto , Sangshik Kim , Eun-Ae Choi , Seung Zeon Han
{"title":"添加Mn形成的晶界相对Cu-6Ni-1.3Si均质合金疲劳裂纹萌生和扩展的影响","authors":"Masahiro Goto ,&nbsp;Takaei Yamamoto ,&nbsp;Sangshik Kim ,&nbsp;Eun-Ae Choi ,&nbsp;Seung Zeon Han","doi":"10.1016/j.ijfatigue.2024.108731","DOIUrl":null,"url":null,"abstract":"<div><div>High-strength cast Cu alloys often contain substantial quantities of alloying elements that promote the nucleation of heterogeneous particles, particularly at grain boundaries (GBs). In the Cu-6Ni-1.3Si alloy, intermetallic compounds such as Ni<sub>2</sub>Si form within the matrix and along the GBs following homogenization. Ni<sub>2</sub>Si particles within the matrix are homogeneously nucleated with diameters of a few tens of nanometers, which enhances matrix strength. However, heterogeneously nucleated Ni<sub>2</sub>Si particles at GBs, which can be several micrometers in size, negatively impact overall strength. To improve the strength of Cu-6Ni-1.3Si alloy, 2.1 wt% Mn was added. This Mn addition led to the formation of plate- or film-shaped intermetallic compounds, specifically Ni<sub>16</sub>Si<sub>7</sub>Mn<sub>6</sub> (G-phase), at GBs after homogenization. Despite the Mn addition, Ni<sub>2</sub>Si precipitates with diameters of a few tens of nanometers still formed within the grains, but these were more densely distributed in the Mn-added alloy compared to the Mn-free alloy. Fatigue tests conducted on round bar specimens of both alloys showed that Mn addition enhanced fatigue strength. This enhancement is attributed to the suppression of both crack initiation and propagation along the GBs and within the matrix.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"192 ","pages":"Article 108731"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of grain boundary phase formed by Mn addition on initiation and propagation of fatigue cracks in homogenized Cu-6Ni-1.3Si alloy\",\"authors\":\"Masahiro Goto ,&nbsp;Takaei Yamamoto ,&nbsp;Sangshik Kim ,&nbsp;Eun-Ae Choi ,&nbsp;Seung Zeon Han\",\"doi\":\"10.1016/j.ijfatigue.2024.108731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-strength cast Cu alloys often contain substantial quantities of alloying elements that promote the nucleation of heterogeneous particles, particularly at grain boundaries (GBs). In the Cu-6Ni-1.3Si alloy, intermetallic compounds such as Ni<sub>2</sub>Si form within the matrix and along the GBs following homogenization. Ni<sub>2</sub>Si particles within the matrix are homogeneously nucleated with diameters of a few tens of nanometers, which enhances matrix strength. However, heterogeneously nucleated Ni<sub>2</sub>Si particles at GBs, which can be several micrometers in size, negatively impact overall strength. To improve the strength of Cu-6Ni-1.3Si alloy, 2.1 wt% Mn was added. This Mn addition led to the formation of plate- or film-shaped intermetallic compounds, specifically Ni<sub>16</sub>Si<sub>7</sub>Mn<sub>6</sub> (G-phase), at GBs after homogenization. Despite the Mn addition, Ni<sub>2</sub>Si precipitates with diameters of a few tens of nanometers still formed within the grains, but these were more densely distributed in the Mn-added alloy compared to the Mn-free alloy. Fatigue tests conducted on round bar specimens of both alloys showed that Mn addition enhanced fatigue strength. This enhancement is attributed to the suppression of both crack initiation and propagation along the GBs and within the matrix.</div></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"192 \",\"pages\":\"Article 108731\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142112324005905\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005905","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

高强度铸造铜合金通常含有大量的合金元素,这些元素促进了非均质颗粒的形核,特别是在晶界处。在Cu-6Ni-1.3Si合金中,Ni2Si等金属间化合物在基体内部和均匀化后沿GBs形成。基体内的Ni2Si颗粒成核均匀,直径为几十纳米,增强了基体的强度。然而,非均质成核的Ni2Si颗粒(尺寸可达几微米)会对整体强度产生负面影响。为了提高Cu-6Ni-1.3Si合金的强度,在合金中加入2.1 wt%的Mn。Mn的加入导致均匀化后在GBs处形成板状或薄膜状的金属间化合物,特别是Ni16Si7Mn6 (g相)。尽管添加了Mn,晶粒内仍会形成直径为几十纳米的Ni2Si析出物,但这些析出物在添加Mn合金中的分布比无Mn合金更为密集。对两种合金的圆棒试样进行了疲劳试验,结果表明Mn的加入提高了合金的疲劳强度。这种增强归因于沿GBs和基体内部的裂纹萌生和扩展受到抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of grain boundary phase formed by Mn addition on initiation and propagation of fatigue cracks in homogenized Cu-6Ni-1.3Si alloy
High-strength cast Cu alloys often contain substantial quantities of alloying elements that promote the nucleation of heterogeneous particles, particularly at grain boundaries (GBs). In the Cu-6Ni-1.3Si alloy, intermetallic compounds such as Ni2Si form within the matrix and along the GBs following homogenization. Ni2Si particles within the matrix are homogeneously nucleated with diameters of a few tens of nanometers, which enhances matrix strength. However, heterogeneously nucleated Ni2Si particles at GBs, which can be several micrometers in size, negatively impact overall strength. To improve the strength of Cu-6Ni-1.3Si alloy, 2.1 wt% Mn was added. This Mn addition led to the formation of plate- or film-shaped intermetallic compounds, specifically Ni16Si7Mn6 (G-phase), at GBs after homogenization. Despite the Mn addition, Ni2Si precipitates with diameters of a few tens of nanometers still formed within the grains, but these were more densely distributed in the Mn-added alloy compared to the Mn-free alloy. Fatigue tests conducted on round bar specimens of both alloys showed that Mn addition enhanced fatigue strength. This enhancement is attributed to the suppression of both crack initiation and propagation along the GBs and within the matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fatigue
International Journal of Fatigue 工程技术-材料科学:综合
CiteScore
10.70
自引率
21.70%
发文量
619
审稿时长
58 days
期刊介绍: Typical subjects discussed in International Journal of Fatigue address: Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements) Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions) Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation) Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering Smart materials and structures that can sense and mitigate fatigue degradation Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信