利用结构感知图转换器推进知识图的规则学习

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Kang Xu, Miqi Chen, Yifan Feng, Zhenjiang Dong
{"title":"利用结构感知图转换器推进知识图的规则学习","authors":"Kang Xu,&nbsp;Miqi Chen,&nbsp;Yifan Feng,&nbsp;Zhenjiang Dong","doi":"10.1016/j.ipm.2024.103976","DOIUrl":null,"url":null,"abstract":"<div><div>In knowledge graphs (KGs), logic rules offer interpretable explanations for predictions and are essential for reasoning on downstream tasks, such as question answering. However, a key challenge remains unresolved: how to effectively encode and utilize the structural features around the head entity to generate the most applicable rules. This paper proposes a structure-aware graph transformer for rule learning, namely Structure-Aware Rule Learning (SARL), which leverages both local and global structural information of the subgraph around the head entity to generate the most suitable rule path. SARL employs a generalized attention mechanism combined with replaceable feature extractors to aggregate local structural information of entities. It then incorporates global structural and relational information to further model the subgraph structure. Finally, a rule decoder utilizes the comprehensive subgraph representation to generate the most appropriate rules. Comprehensive experiments on four real-world knowledge graph datasets reveal that SARL significantly enhances performance and surpasses existing methods in the link prediction task on large-scale KGs, with Hits@1 improvements of 6.5% on UMLS and 4.5% on FB15K-237.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 2","pages":"Article 103976"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing rule learning in knowledge graphs with structure-aware graph transformer\",\"authors\":\"Kang Xu,&nbsp;Miqi Chen,&nbsp;Yifan Feng,&nbsp;Zhenjiang Dong\",\"doi\":\"10.1016/j.ipm.2024.103976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In knowledge graphs (KGs), logic rules offer interpretable explanations for predictions and are essential for reasoning on downstream tasks, such as question answering. However, a key challenge remains unresolved: how to effectively encode and utilize the structural features around the head entity to generate the most applicable rules. This paper proposes a structure-aware graph transformer for rule learning, namely Structure-Aware Rule Learning (SARL), which leverages both local and global structural information of the subgraph around the head entity to generate the most suitable rule path. SARL employs a generalized attention mechanism combined with replaceable feature extractors to aggregate local structural information of entities. It then incorporates global structural and relational information to further model the subgraph structure. Finally, a rule decoder utilizes the comprehensive subgraph representation to generate the most appropriate rules. Comprehensive experiments on four real-world knowledge graph datasets reveal that SARL significantly enhances performance and surpasses existing methods in the link prediction task on large-scale KGs, with Hits@1 improvements of 6.5% on UMLS and 4.5% on FB15K-237.</div></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":\"62 2\",\"pages\":\"Article 103976\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457324003352\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324003352","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在知识图(KGs)中,逻辑规则为预测提供可解释的解释,并且对于下游任务(如问题回答)的推理至关重要。然而,一个关键的挑战仍然没有解决:如何有效地编码和利用头部实体周围的结构特征来生成最适用的规则。本文提出了一种用于规则学习的结构感知图转换器,即结构感知规则学习(SARL),它利用头部实体周围子图的局部和全局结构信息来生成最合适的规则路径。SARL采用广义注意机制结合可替换的特征提取器对实体的局部结构信息进行聚合。然后结合全局结构和关系信息进一步建模子图结构。最后,规则解码器利用综合子图表示生成最合适的规则。在四个真实世界知识图数据集上的综合实验表明,SARL在大规模KGs的链路预测任务中显著提高了性能,并超越了现有的方法,在UMLS上提高了6.5%,在FB15K-237上提高了4.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing rule learning in knowledge graphs with structure-aware graph transformer
In knowledge graphs (KGs), logic rules offer interpretable explanations for predictions and are essential for reasoning on downstream tasks, such as question answering. However, a key challenge remains unresolved: how to effectively encode and utilize the structural features around the head entity to generate the most applicable rules. This paper proposes a structure-aware graph transformer for rule learning, namely Structure-Aware Rule Learning (SARL), which leverages both local and global structural information of the subgraph around the head entity to generate the most suitable rule path. SARL employs a generalized attention mechanism combined with replaceable feature extractors to aggregate local structural information of entities. It then incorporates global structural and relational information to further model the subgraph structure. Finally, a rule decoder utilizes the comprehensive subgraph representation to generate the most appropriate rules. Comprehensive experiments on four real-world knowledge graph datasets reveal that SARL significantly enhances performance and surpasses existing methods in the link prediction task on large-scale KGs, with Hits@1 improvements of 6.5% on UMLS and 4.5% on FB15K-237.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信