基于线性模型决策树的甲酸脱氢过程多尺度优化

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ethan M. Sunshine , Giovanna Bucci , Tanusree Chatterjee , Shyam Deo , Victoria M. Ehlinger , Wenqin Li , Thomas Moore , Corey Myers , Wenyu Sun , Bo-Xun Wang , Mengyao Yuan , John R. Kitchin , Carl D. Laird , Matthew J. McNenly , Sneha A. Akhade
{"title":"基于线性模型决策树的甲酸脱氢过程多尺度优化","authors":"Ethan M. Sunshine ,&nbsp;Giovanna Bucci ,&nbsp;Tanusree Chatterjee ,&nbsp;Shyam Deo ,&nbsp;Victoria M. Ehlinger ,&nbsp;Wenqin Li ,&nbsp;Thomas Moore ,&nbsp;Corey Myers ,&nbsp;Wenyu Sun ,&nbsp;Bo-Xun Wang ,&nbsp;Mengyao Yuan ,&nbsp;John R. Kitchin ,&nbsp;Carl D. Laird ,&nbsp;Matthew J. McNenly ,&nbsp;Sneha A. Akhade","doi":"10.1016/j.compchemeng.2024.108921","DOIUrl":null,"url":null,"abstract":"<div><div>Multiscale optimization problems require the interconnection of several models of distinct phenomena which occur at different scales in length or time. However, the best model for any particular phenomenon may not be amenable to rigorous optimization techniques. For instance, molecular interactions are often modeled by computational chemistry software packages that cannot be easily converted into optimization constraints. Data-driven surrogate models can overcome this problem. By choosing surrogates with functional forms that are convertible to a mixed-integer linear model, one can connect and optimize these surrogates instead of the underlying models. We demonstrate the interconnection of linear model decision trees to optimize across three scales of a formic acid dehydrogenation process. We show that optimizing across all three scales simultaneously leads to a 40% cost savings compared to optimizing each model independently. Furthermore, the surrogates retain some relevant physical behaviors and provide insights into the optimal design of this process.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108921"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale optimization of formic acid dehydrogenation process via linear model decision tree surrogates\",\"authors\":\"Ethan M. Sunshine ,&nbsp;Giovanna Bucci ,&nbsp;Tanusree Chatterjee ,&nbsp;Shyam Deo ,&nbsp;Victoria M. Ehlinger ,&nbsp;Wenqin Li ,&nbsp;Thomas Moore ,&nbsp;Corey Myers ,&nbsp;Wenyu Sun ,&nbsp;Bo-Xun Wang ,&nbsp;Mengyao Yuan ,&nbsp;John R. Kitchin ,&nbsp;Carl D. Laird ,&nbsp;Matthew J. McNenly ,&nbsp;Sneha A. Akhade\",\"doi\":\"10.1016/j.compchemeng.2024.108921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multiscale optimization problems require the interconnection of several models of distinct phenomena which occur at different scales in length or time. However, the best model for any particular phenomenon may not be amenable to rigorous optimization techniques. For instance, molecular interactions are often modeled by computational chemistry software packages that cannot be easily converted into optimization constraints. Data-driven surrogate models can overcome this problem. By choosing surrogates with functional forms that are convertible to a mixed-integer linear model, one can connect and optimize these surrogates instead of the underlying models. We demonstrate the interconnection of linear model decision trees to optimize across three scales of a formic acid dehydrogenation process. We show that optimizing across all three scales simultaneously leads to a 40% cost savings compared to optimizing each model independently. Furthermore, the surrogates retain some relevant physical behaviors and provide insights into the optimal design of this process.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"194 \",\"pages\":\"Article 108921\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424003399\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003399","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

多尺度优化问题要求在不同尺度或时间上发生的不同现象的几个模型相互连接。然而,针对任何特定现象的最佳模型可能并不适用于严格的优化技术。例如,分子间的相互作用通常是由计算化学软件包建模的,而这些软件包不容易转化为优化约束。数据驱动的代理模型可以克服这个问题。通过选择具有可转换为混合整数线性模型的功能形式的代理,可以连接和优化这些代理,而不是底层模型。我们展示了线性模型决策树的互连,以优化甲酸脱氢过程的三个尺度。我们表明,与单独优化每个模型相比,同时优化所有三个尺度可节省40%的成本。此外,这些替代物保留了一些相关的物理行为,并为这一过程的优化设计提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale optimization of formic acid dehydrogenation process via linear model decision tree surrogates
Multiscale optimization problems require the interconnection of several models of distinct phenomena which occur at different scales in length or time. However, the best model for any particular phenomenon may not be amenable to rigorous optimization techniques. For instance, molecular interactions are often modeled by computational chemistry software packages that cannot be easily converted into optimization constraints. Data-driven surrogate models can overcome this problem. By choosing surrogates with functional forms that are convertible to a mixed-integer linear model, one can connect and optimize these surrogates instead of the underlying models. We demonstrate the interconnection of linear model decision trees to optimize across three scales of a formic acid dehydrogenation process. We show that optimizing across all three scales simultaneously leads to a 40% cost savings compared to optimizing each model independently. Furthermore, the surrogates retain some relevant physical behaviors and provide insights into the optimal design of this process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信