实时更新数据驱动的简化和全订单模型与应用程序

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Om Prakash, Biao Huang
{"title":"实时更新数据驱动的简化和全订单模型与应用程序","authors":"Om Prakash,&nbsp;Biao Huang","doi":"10.1016/j.compchemeng.2024.108923","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a dynamic mode decomposition (DMD) based technique to identify data-driven reduced-order and full-order models and propose two approaches to update them in real-time. These updates are crucial for the models to adapt to the evolving process. The proposed approaches function by calculating the update of the singular value decomposition (SVD), which is the core operation in DMD. In particular, two approaches involving temporal updates and additive modifications are used to update the SVDs. Further, the equivalence of both approaches is proved under special rank conditions. Also, the computational costs involved in these approaches are discussed. The technique is well suited for adaptive process modeling that can be exploited for real-time process monitoring, estimation, control, and optimization. The efficacy of the proposed approach is demonstrated using a large-scale benchmark wastewater treatment process.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108923"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time update of data-driven reduced and full order models with applications\",\"authors\":\"Om Prakash,&nbsp;Biao Huang\",\"doi\":\"10.1016/j.compchemeng.2024.108923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a dynamic mode decomposition (DMD) based technique to identify data-driven reduced-order and full-order models and propose two approaches to update them in real-time. These updates are crucial for the models to adapt to the evolving process. The proposed approaches function by calculating the update of the singular value decomposition (SVD), which is the core operation in DMD. In particular, two approaches involving temporal updates and additive modifications are used to update the SVDs. Further, the equivalence of both approaches is proved under special rank conditions. Also, the computational costs involved in these approaches are discussed. The technique is well suited for adaptive process modeling that can be exploited for real-time process monitoring, estimation, control, and optimization. The efficacy of the proposed approach is demonstrated using a large-scale benchmark wastewater treatment process.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"194 \",\"pages\":\"Article 108923\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424003417\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003417","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一种基于动态模态分解(DMD)的技术来识别数据驱动的降阶和全阶模型,并提出了两种实时更新模型的方法。这些更新对于模型适应不断发展的过程至关重要。该方法通过计算奇异值分解(SVD)的更新来实现,这是DMD的核心操作。特别地,使用了涉及时间更新和附加修改的两种方法来更新svd。进一步证明了两种方法在特殊秩条件下的等价性。此外,还讨论了这些方法所涉及的计算成本。该技术非常适合自适应过程建模,可用于实时过程监视、估计、控制和优化。通过大规模的基准废水处理过程证明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time update of data-driven reduced and full order models with applications
We consider a dynamic mode decomposition (DMD) based technique to identify data-driven reduced-order and full-order models and propose two approaches to update them in real-time. These updates are crucial for the models to adapt to the evolving process. The proposed approaches function by calculating the update of the singular value decomposition (SVD), which is the core operation in DMD. In particular, two approaches involving temporal updates and additive modifications are used to update the SVDs. Further, the equivalence of both approaches is proved under special rank conditions. Also, the computational costs involved in these approaches are discussed. The technique is well suited for adaptive process modeling that can be exploited for real-time process monitoring, estimation, control, and optimization. The efficacy of the proposed approach is demonstrated using a large-scale benchmark wastewater treatment process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信