{"title":"实时更新数据驱动的简化和全订单模型与应用程序","authors":"Om Prakash, Biao Huang","doi":"10.1016/j.compchemeng.2024.108923","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a dynamic mode decomposition (DMD) based technique to identify data-driven reduced-order and full-order models and propose two approaches to update them in real-time. These updates are crucial for the models to adapt to the evolving process. The proposed approaches function by calculating the update of the singular value decomposition (SVD), which is the core operation in DMD. In particular, two approaches involving temporal updates and additive modifications are used to update the SVDs. Further, the equivalence of both approaches is proved under special rank conditions. Also, the computational costs involved in these approaches are discussed. The technique is well suited for adaptive process modeling that can be exploited for real-time process monitoring, estimation, control, and optimization. The efficacy of the proposed approach is demonstrated using a large-scale benchmark wastewater treatment process.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108923"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time update of data-driven reduced and full order models with applications\",\"authors\":\"Om Prakash, Biao Huang\",\"doi\":\"10.1016/j.compchemeng.2024.108923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a dynamic mode decomposition (DMD) based technique to identify data-driven reduced-order and full-order models and propose two approaches to update them in real-time. These updates are crucial for the models to adapt to the evolving process. The proposed approaches function by calculating the update of the singular value decomposition (SVD), which is the core operation in DMD. In particular, two approaches involving temporal updates and additive modifications are used to update the SVDs. Further, the equivalence of both approaches is proved under special rank conditions. Also, the computational costs involved in these approaches are discussed. The technique is well suited for adaptive process modeling that can be exploited for real-time process monitoring, estimation, control, and optimization. The efficacy of the proposed approach is demonstrated using a large-scale benchmark wastewater treatment process.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"194 \",\"pages\":\"Article 108923\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424003417\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003417","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Real-time update of data-driven reduced and full order models with applications
We consider a dynamic mode decomposition (DMD) based technique to identify data-driven reduced-order and full-order models and propose two approaches to update them in real-time. These updates are crucial for the models to adapt to the evolving process. The proposed approaches function by calculating the update of the singular value decomposition (SVD), which is the core operation in DMD. In particular, two approaches involving temporal updates and additive modifications are used to update the SVDs. Further, the equivalence of both approaches is proved under special rank conditions. Also, the computational costs involved in these approaches are discussed. The technique is well suited for adaptive process modeling that can be exploited for real-time process monitoring, estimation, control, and optimization. The efficacy of the proposed approach is demonstrated using a large-scale benchmark wastewater treatment process.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.