求解时谐麦克斯韦方程组的深傅立叶残差法

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jamie M. Taylor , Manuela Bastidas , David Pardo , Ignacio Muga
{"title":"求解时谐麦克斯韦方程组的深傅立叶残差法","authors":"Jamie M. Taylor ,&nbsp;Manuela Bastidas ,&nbsp;David Pardo ,&nbsp;Ignacio Muga","doi":"10.1016/j.jcp.2024.113623","DOIUrl":null,"url":null,"abstract":"<div><div>Solving PDEs with machine learning techniques has become a popular alternative to conventional methods. In this context, Neural networks (NNs) are among the most commonly used machine learning tools, and in those models, the choice of an appropriate loss function is critical. In general, the main goal is to guarantee that minimizing the loss during training translates to minimizing the error in the solution at the same rate. In this work, we focus on the time-harmonic Maxwell's equations, whose weak formulation takes <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mrow><mi>curl</mi></mrow><mo>,</mo><mi>Ω</mi><mo>)</mo></math></span> as the space of test functions. We propose a NN in which the loss function is a computable approximation of the dual norm of the weak-form PDE residual. To that end, we employ the Helmholtz decomposition of the space <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mrow><mi>curl</mi></mrow><mo>,</mo><mi>Ω</mi><mo>)</mo></math></span> and construct an orthonormal basis for this space in two and three spatial dimensions. Here, we use the Discrete Sine/Cosine Transform to accurately and efficiently compute the discrete version of our proposed loss function. Moreover, in the numerical examples we show a high correlation between the proposed loss function and the <em>H</em>(curl)-norm of the error, even in problems with low-regularity solutions.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"523 ","pages":"Article 113623"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Fourier Residual method for solving time-harmonic Maxwell's equations\",\"authors\":\"Jamie M. Taylor ,&nbsp;Manuela Bastidas ,&nbsp;David Pardo ,&nbsp;Ignacio Muga\",\"doi\":\"10.1016/j.jcp.2024.113623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solving PDEs with machine learning techniques has become a popular alternative to conventional methods. In this context, Neural networks (NNs) are among the most commonly used machine learning tools, and in those models, the choice of an appropriate loss function is critical. In general, the main goal is to guarantee that minimizing the loss during training translates to minimizing the error in the solution at the same rate. In this work, we focus on the time-harmonic Maxwell's equations, whose weak formulation takes <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mrow><mi>curl</mi></mrow><mo>,</mo><mi>Ω</mi><mo>)</mo></math></span> as the space of test functions. We propose a NN in which the loss function is a computable approximation of the dual norm of the weak-form PDE residual. To that end, we employ the Helmholtz decomposition of the space <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mrow><mi>curl</mi></mrow><mo>,</mo><mi>Ω</mi><mo>)</mo></math></span> and construct an orthonormal basis for this space in two and three spatial dimensions. Here, we use the Discrete Sine/Cosine Transform to accurately and efficiently compute the discrete version of our proposed loss function. Moreover, in the numerical examples we show a high correlation between the proposed loss function and the <em>H</em>(curl)-norm of the error, even in problems with low-regularity solutions.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"523 \",\"pages\":\"Article 113623\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124008714\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124008714","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

用机器学习技术求解偏微分方程已经成为传统方法的流行替代方案。在这种情况下,神经网络(nn)是最常用的机器学习工具之一,在这些模型中,选择合适的损失函数至关重要。一般来说,主要目标是保证最小化训练期间的损失转化为最小化解决方案中的错误。在这项工作中,我们关注时谐麦克斯韦方程组,其弱公式以H0(旋度,Ω)作为测试函数的空间。我们提出了一种神经网络,其中损失函数是弱形式PDE残差对偶模的可计算逼近。为此,我们采用了空间H0(旋度,Ω)的亥姆霍兹分解,并在二维和三维空间中构造了该空间的标准正交基。在这里,我们使用离散正弦/余弦变换来准确有效地计算我们提出的损失函数的离散版本。此外,在数值示例中,我们显示了所提出的损失函数与误差的H(旋度)范数之间的高度相关性,即使在具有低正则性解的问题中也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Fourier Residual method for solving time-harmonic Maxwell's equations
Solving PDEs with machine learning techniques has become a popular alternative to conventional methods. In this context, Neural networks (NNs) are among the most commonly used machine learning tools, and in those models, the choice of an appropriate loss function is critical. In general, the main goal is to guarantee that minimizing the loss during training translates to minimizing the error in the solution at the same rate. In this work, we focus on the time-harmonic Maxwell's equations, whose weak formulation takes H0(curl,Ω) as the space of test functions. We propose a NN in which the loss function is a computable approximation of the dual norm of the weak-form PDE residual. To that end, we employ the Helmholtz decomposition of the space H0(curl,Ω) and construct an orthonormal basis for this space in two and three spatial dimensions. Here, we use the Discrete Sine/Cosine Transform to accurately and efficiently compute the discrete version of our proposed loss function. Moreover, in the numerical examples we show a high correlation between the proposed loss function and the H(curl)-norm of the error, even in problems with low-regularity solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信