正下曲率界下Kähler和四元数Kähler流形的直径定理

IF 0.6 4区 数学 Q3 MATHEMATICS
Maria Gordina , Gunhee Cho
{"title":"正下曲率界下Kähler和四元数Kähler流形的直径定理","authors":"Maria Gordina ,&nbsp;Gunhee Cho","doi":"10.1016/j.difgeo.2024.102218","DOIUrl":null,"url":null,"abstract":"<div><div>We define the orthogonal Bakry-Émery tensor as a generalization of the orthogonal Ricci curvature, and then study diameter theorems on Kähler and quaternionic Kähler manifolds under positivity assumption on the orthogonal Bakry-Émery tensor. Moreover, under such assumptions on the orthogonal Bakry-Émery tensor and the holomorphic or quaternionic sectional curvature on a Kähler manifold or a quaternionic Kähler manifold respectively, the Bonnet-Myers type diameter bounds are sharper than in the Riemannian case.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"98 ","pages":"Article 102218"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diameter theorems on Kähler and quaternionic Kähler manifolds under a positive lower curvature bound\",\"authors\":\"Maria Gordina ,&nbsp;Gunhee Cho\",\"doi\":\"10.1016/j.difgeo.2024.102218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We define the orthogonal Bakry-Émery tensor as a generalization of the orthogonal Ricci curvature, and then study diameter theorems on Kähler and quaternionic Kähler manifolds under positivity assumption on the orthogonal Bakry-Émery tensor. Moreover, under such assumptions on the orthogonal Bakry-Émery tensor and the holomorphic or quaternionic sectional curvature on a Kähler manifold or a quaternionic Kähler manifold respectively, the Bonnet-Myers type diameter bounds are sharper than in the Riemannian case.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"98 \",\"pages\":\"Article 102218\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524001116\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524001116","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们将正交Bakry-Émery张量定义为正交Ricci曲率的推广,然后在正交Bakry-Émery张量的正假设下,研究了Kähler和四元数Kähler流形上的直径定理。此外,在这些假设下,在正交Bakry-Émery张量和Kähler流形或Kähler流形上的全纯或四元数截面曲率,Bonnet-Myers型直径界比黎曼情况下更清晰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diameter theorems on Kähler and quaternionic Kähler manifolds under a positive lower curvature bound
We define the orthogonal Bakry-Émery tensor as a generalization of the orthogonal Ricci curvature, and then study diameter theorems on Kähler and quaternionic Kähler manifolds under positivity assumption on the orthogonal Bakry-Émery tensor. Moreover, under such assumptions on the orthogonal Bakry-Émery tensor and the holomorphic or quaternionic sectional curvature on a Kähler manifold or a quaternionic Kähler manifold respectively, the Bonnet-Myers type diameter bounds are sharper than in the Riemannian case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信