Shoujun Jia , Lotte de Vugt , Andreas Mayr , Chun Liu , Martin Rutzinger
{"title":"地形点云变化估计的位置和方向联合图比较","authors":"Shoujun Jia , Lotte de Vugt , Andreas Mayr , Chun Liu , Martin Rutzinger","doi":"10.1016/j.isprsjprs.2024.11.016","DOIUrl":null,"url":null,"abstract":"<div><div>3D topographic point cloud change estimation produces fundamental inputs for understanding Earth surface process dynamics. In general, change estimation aims at detecting the largest possible number of points with significance (<em>i.e.,</em> difference <span><math><mrow><mo>></mo></mrow></math></span> uncertainty) and quantifying multiple types of topographic changes. However, several complex factors, including the inhomogeneous nature of point cloud data, the high uncertainty in positional changes, and the different types of quantifying difference, pose challenges for the reliable detection and quantification of 3D topographic changes. To address these limitations, the paper proposes a graph comparison-based method to estimate 3D topographic change from point clouds. First, a graph with both location and orientation representation is designed to aggregate local neighbors of topographic point clouds against the disordered and unstructured data nature. Second, the corresponding graphs between two topographic point clouds are identified and compared to quantify the differences and associated uncertainties in both location and orientation features. Particularly, the proposed method unites the significant changes derived from both features (<em>i.e.,</em> location and orientation) and captures the location difference (<em>i.e.,</em> distance) and the orientation difference (<em>i.e.,</em> rotation) for each point with significant change. We tested the proposed method in a mountain region (Sellrain, Tyrol, Austria) covered by three airborne laser scanning point cloud pairs with different point densities and complex topographic changes at intervals of four, six, and ten years. Our method detected significant changes in 91.39 % − 93.03 % of the study area, while a state-of-the-art method (<em>i.e.,</em> Multiscale Model-to-Model Cloud Comparison, M3C2) identified 36.81 % − 47.41 % significant changes for the same area. Especially for unchanged building roofs, our method measured lower change magnitudes than M3C2. Looking at the case of shallow landslides, our method identified 84 out of a total of 88 reference landslides by analysing change in distance or rotation. Therefore, our method not only detects a large number of significant changes but also quantifies two types of topographic changes (<em>i.e.,</em> distance and rotation), and is more robust against registration errors. It shows large potential for estimation and interpretation of topographic changes in natural environments.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"219 ","pages":"Pages 52-70"},"PeriodicalIF":10.6000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Location and orientation united graph comparison for topographic point cloud change estimation\",\"authors\":\"Shoujun Jia , Lotte de Vugt , Andreas Mayr , Chun Liu , Martin Rutzinger\",\"doi\":\"10.1016/j.isprsjprs.2024.11.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>3D topographic point cloud change estimation produces fundamental inputs for understanding Earth surface process dynamics. In general, change estimation aims at detecting the largest possible number of points with significance (<em>i.e.,</em> difference <span><math><mrow><mo>></mo></mrow></math></span> uncertainty) and quantifying multiple types of topographic changes. However, several complex factors, including the inhomogeneous nature of point cloud data, the high uncertainty in positional changes, and the different types of quantifying difference, pose challenges for the reliable detection and quantification of 3D topographic changes. To address these limitations, the paper proposes a graph comparison-based method to estimate 3D topographic change from point clouds. First, a graph with both location and orientation representation is designed to aggregate local neighbors of topographic point clouds against the disordered and unstructured data nature. Second, the corresponding graphs between two topographic point clouds are identified and compared to quantify the differences and associated uncertainties in both location and orientation features. Particularly, the proposed method unites the significant changes derived from both features (<em>i.e.,</em> location and orientation) and captures the location difference (<em>i.e.,</em> distance) and the orientation difference (<em>i.e.,</em> rotation) for each point with significant change. We tested the proposed method in a mountain region (Sellrain, Tyrol, Austria) covered by three airborne laser scanning point cloud pairs with different point densities and complex topographic changes at intervals of four, six, and ten years. Our method detected significant changes in 91.39 % − 93.03 % of the study area, while a state-of-the-art method (<em>i.e.,</em> Multiscale Model-to-Model Cloud Comparison, M3C2) identified 36.81 % − 47.41 % significant changes for the same area. Especially for unchanged building roofs, our method measured lower change magnitudes than M3C2. Looking at the case of shallow landslides, our method identified 84 out of a total of 88 reference landslides by analysing change in distance or rotation. Therefore, our method not only detects a large number of significant changes but also quantifies two types of topographic changes (<em>i.e.,</em> distance and rotation), and is more robust against registration errors. It shows large potential for estimation and interpretation of topographic changes in natural environments.</div></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"219 \",\"pages\":\"Pages 52-70\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624004234\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624004234","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Location and orientation united graph comparison for topographic point cloud change estimation
3D topographic point cloud change estimation produces fundamental inputs for understanding Earth surface process dynamics. In general, change estimation aims at detecting the largest possible number of points with significance (i.e., difference uncertainty) and quantifying multiple types of topographic changes. However, several complex factors, including the inhomogeneous nature of point cloud data, the high uncertainty in positional changes, and the different types of quantifying difference, pose challenges for the reliable detection and quantification of 3D topographic changes. To address these limitations, the paper proposes a graph comparison-based method to estimate 3D topographic change from point clouds. First, a graph with both location and orientation representation is designed to aggregate local neighbors of topographic point clouds against the disordered and unstructured data nature. Second, the corresponding graphs between two topographic point clouds are identified and compared to quantify the differences and associated uncertainties in both location and orientation features. Particularly, the proposed method unites the significant changes derived from both features (i.e., location and orientation) and captures the location difference (i.e., distance) and the orientation difference (i.e., rotation) for each point with significant change. We tested the proposed method in a mountain region (Sellrain, Tyrol, Austria) covered by three airborne laser scanning point cloud pairs with different point densities and complex topographic changes at intervals of four, six, and ten years. Our method detected significant changes in 91.39 % − 93.03 % of the study area, while a state-of-the-art method (i.e., Multiscale Model-to-Model Cloud Comparison, M3C2) identified 36.81 % − 47.41 % significant changes for the same area. Especially for unchanged building roofs, our method measured lower change magnitudes than M3C2. Looking at the case of shallow landslides, our method identified 84 out of a total of 88 reference landslides by analysing change in distance or rotation. Therefore, our method not only detects a large number of significant changes but also quantifies two types of topographic changes (i.e., distance and rotation), and is more robust against registration errors. It shows large potential for estimation and interpretation of topographic changes in natural environments.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.