具有均匀表面末端的TMCCs@MoS2异质结构作为钠和钾离子电池阳极的前景预测

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuxuan Hou, Haoliang Liu, Qin Jiang, Sateng Li, Kai Wu, Yonghong Cheng, Bing Xiao
{"title":"具有均匀表面末端的TMCCs@MoS2异质结构作为钠和钾离子电池阳极的前景预测","authors":"Yuxuan Hou,&nbsp;Haoliang Liu,&nbsp;Qin Jiang,&nbsp;Sateng Li,&nbsp;Kai Wu,&nbsp;Yonghong Cheng,&nbsp;Bing Xiao","doi":"10.1016/j.commatsci.2024.113568","DOIUrl":null,"url":null,"abstract":"<div><div>The construction of the novel van der Waals TMCC//MoS<sub>2</sub> and surface anchored TMCC⊥MoS<sub>2</sub> heterostructures for their potential applications as anodes in alkaline metal ion batteries is investigated employing the first-principles calculations. We predict that the parallel (Nb<sub>2</sub>S<sub>2</sub>C//MoS<sub>2</sub> and Ta<sub>2</sub>S<sub>2</sub>C//MoS<sub>2</sub>) and anchored (Nb<sub>2</sub>S<sub>2</sub>C⊥MoS<sub>2</sub> and Ta<sub>2</sub>S<sub>2</sub>C⊥MoS<sub>2</sub>) heterostructures are thermodynamically and thermally stable, and all heterostructures show metallic like electronic band dispersions at Fermi level. The electrochemical energy storage performance of those heterostructures is characterized by calculating the theoretical capacities, open circuit voltages and ion diffusion barrier heights for Li, Na and K absorbates. The predicted total capacities of parallel and anchored TMCC@MoS<sub>2</sub> for LIB, SIB and PIB are in a range from 134 mAh/g to 334 mAh/g, while the obtained mean OCVs are situated between 0.40 V and 0.60 V. For those favorable migration pathways, the diffusion energy barrier heights are found to be in a range from 0.10 eV to 0.60 eV for alkaline metal ions. Notably, TMCC@MoS<sub>2</sub> heterostructures show promising electrochemical performance in terms of their relatively high theoretical capacities for the use as anodes in SIB (130 mAh/g–270 mAh/g) and PIB (134 mAh/g–198 mAh/g).</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"248 ","pages":"Article 113568"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of TMCCs@MoS2 heterostructures with homogeneous surface terminations as promising anodes for sodium and potassium ion batteries\",\"authors\":\"Yuxuan Hou,&nbsp;Haoliang Liu,&nbsp;Qin Jiang,&nbsp;Sateng Li,&nbsp;Kai Wu,&nbsp;Yonghong Cheng,&nbsp;Bing Xiao\",\"doi\":\"10.1016/j.commatsci.2024.113568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The construction of the novel van der Waals TMCC//MoS<sub>2</sub> and surface anchored TMCC⊥MoS<sub>2</sub> heterostructures for their potential applications as anodes in alkaline metal ion batteries is investigated employing the first-principles calculations. We predict that the parallel (Nb<sub>2</sub>S<sub>2</sub>C//MoS<sub>2</sub> and Ta<sub>2</sub>S<sub>2</sub>C//MoS<sub>2</sub>) and anchored (Nb<sub>2</sub>S<sub>2</sub>C⊥MoS<sub>2</sub> and Ta<sub>2</sub>S<sub>2</sub>C⊥MoS<sub>2</sub>) heterostructures are thermodynamically and thermally stable, and all heterostructures show metallic like electronic band dispersions at Fermi level. The electrochemical energy storage performance of those heterostructures is characterized by calculating the theoretical capacities, open circuit voltages and ion diffusion barrier heights for Li, Na and K absorbates. The predicted total capacities of parallel and anchored TMCC@MoS<sub>2</sub> for LIB, SIB and PIB are in a range from 134 mAh/g to 334 mAh/g, while the obtained mean OCVs are situated between 0.40 V and 0.60 V. For those favorable migration pathways, the diffusion energy barrier heights are found to be in a range from 0.10 eV to 0.60 eV for alkaline metal ions. Notably, TMCC@MoS<sub>2</sub> heterostructures show promising electrochemical performance in terms of their relatively high theoretical capacities for the use as anodes in SIB (130 mAh/g–270 mAh/g) and PIB (134 mAh/g–198 mAh/g).</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"248 \",\"pages\":\"Article 113568\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624007894\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624007894","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用第一性原理计算研究了新型范德华TMCC//MoS2和表面锚定TMCC⊥MoS2异质结构作为碱性金属离子电池阳极的潜在应用。我们预测平行(Nb2S2C//MoS2和Ta2S2C//MoS2)和锚定(Nb2S2C⊥MoS2和Ta2S2C⊥MoS2)异质结构是热力学和热稳定的,所有异质结构在费米能级上都表现出金属样的电子能带色散。通过计算Li, Na和K吸收剂的理论容量,开路电压和离子扩散势垒高度来表征这些异质结构的电化学储能性能。预测LIB, SIB和PIB的并联和锚定TMCC@MoS2总容量在134 mAh/g至334 mAh/g之间,而获得的平均ocv位于0.40 V至0.60 V之间。对于这些有利的迁移路径,发现碱金属离子的扩散能垒高度在0.10 ~ 0.60 eV之间。值得注意的是,TMCC@MoS2异质结构在SIB (130 mAh/g - 270 mAh/g)和PIB (134 mAh/g - 198 mAh/g)中作为阳极的理论容量相对较高,表现出了良好的电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Prediction of TMCCs@MoS2 heterostructures with homogeneous surface terminations as promising anodes for sodium and potassium ion batteries

Prediction of TMCCs@MoS2 heterostructures with homogeneous surface terminations as promising anodes for sodium and potassium ion batteries
The construction of the novel van der Waals TMCC//MoS2 and surface anchored TMCC⊥MoS2 heterostructures for their potential applications as anodes in alkaline metal ion batteries is investigated employing the first-principles calculations. We predict that the parallel (Nb2S2C//MoS2 and Ta2S2C//MoS2) and anchored (Nb2S2C⊥MoS2 and Ta2S2C⊥MoS2) heterostructures are thermodynamically and thermally stable, and all heterostructures show metallic like electronic band dispersions at Fermi level. The electrochemical energy storage performance of those heterostructures is characterized by calculating the theoretical capacities, open circuit voltages and ion diffusion barrier heights for Li, Na and K absorbates. The predicted total capacities of parallel and anchored TMCC@MoS2 for LIB, SIB and PIB are in a range from 134 mAh/g to 334 mAh/g, while the obtained mean OCVs are situated between 0.40 V and 0.60 V. For those favorable migration pathways, the diffusion energy barrier heights are found to be in a range from 0.10 eV to 0.60 eV for alkaline metal ions. Notably, TMCC@MoS2 heterostructures show promising electrochemical performance in terms of their relatively high theoretical capacities for the use as anodes in SIB (130 mAh/g–270 mAh/g) and PIB (134 mAh/g–198 mAh/g).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信