甲壳鞭毛虫与非甲壳鞭毛虫对海洋酸化的不同反应

IF 5.5 1区 生物学 Q1 MARINE & FRESHWATER BIOLOGY
Wei-Ping Zhang , Shuo-Yu Zhang , Yang Zhou , Wen-Jing Sun , Shu-Feng Zhang , Jae-Seong Lee , Minghua Wang , Da-Zhi Wang
{"title":"甲壳鞭毛虫与非甲壳鞭毛虫对海洋酸化的不同反应","authors":"Wei-Ping Zhang ,&nbsp;Shuo-Yu Zhang ,&nbsp;Yang Zhou ,&nbsp;Wen-Jing Sun ,&nbsp;Shu-Feng Zhang ,&nbsp;Jae-Seong Lee ,&nbsp;Minghua Wang ,&nbsp;Da-Zhi Wang","doi":"10.1016/j.hal.2024.102772","DOIUrl":null,"url":null,"abstract":"<div><div>Dinoflagellates, both armored and unarmored, with distinct cell wall difference, are being affected by elevated CO<sub>2</sub>-induced ocean acidification (OA). However, their specific responses to OA are not well understood. In this study, we investigated the physiological and molecular response of the armored species <em>Prorocentrum obtusidens</em> and the unarmored species <em>Karenia mikimotoi</em> to OA over a 28-day period. The results show that the two species responded differently to OA. Cell growth rate, particulate organic carbon (POC) content, and the activities of C<sub>4</sub> pathway enzymes decreased in <em>P. obtusidens</em> under future acidified ocean condition (pH 7.8, 1000 μatm <em>p</em>CO<sub>2</sub>), but the activities of carbonic anhydrase (CA), ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), and superoxide dismutase (SOD) increased. Whereas cell growth rate, contents of Chl <em>a</em> and PON, and SOD activity altered insignificantly in <em>K. mikimotoi</em>, but contents of POC and total carbohydrate, and the activity of RubisCO increased while the activities of CA and C<sub>4</sub> pathway enzymes decreased. Transcriptomic analysis indicates that genes associated with antioxidative response, heat shock protein, proteasome, signal transduction, ribosome, and pH regulation were up-regulated in <em>P. obtusidens</em> but down-regulated in <em>K. mikimotoi</em>. Notably, the synthesis of soluble organic matter (i.e., spermidine and trehalose) was enhanced in <em>K. mikimotoi</em>, thereby regulating intracellular pH and improving stress resistance. This study highlights the divergent response of the armored and unarmored dinoflagellates to OA, with the unarmored dinoflagellate exhibiting a higher ability to withstand this stressor. Therefore, caution should be exercised when predicting the behavior and the eventual fate of dinoflagellates in the future acidified ocean.</div></div>","PeriodicalId":12897,"journal":{"name":"Harmful Algae","volume":"141 ","pages":"Article 102772"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divergent responses of an armored and an unarmored dinoflagellate to ocean acidification\",\"authors\":\"Wei-Ping Zhang ,&nbsp;Shuo-Yu Zhang ,&nbsp;Yang Zhou ,&nbsp;Wen-Jing Sun ,&nbsp;Shu-Feng Zhang ,&nbsp;Jae-Seong Lee ,&nbsp;Minghua Wang ,&nbsp;Da-Zhi Wang\",\"doi\":\"10.1016/j.hal.2024.102772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dinoflagellates, both armored and unarmored, with distinct cell wall difference, are being affected by elevated CO<sub>2</sub>-induced ocean acidification (OA). However, their specific responses to OA are not well understood. In this study, we investigated the physiological and molecular response of the armored species <em>Prorocentrum obtusidens</em> and the unarmored species <em>Karenia mikimotoi</em> to OA over a 28-day period. The results show that the two species responded differently to OA. Cell growth rate, particulate organic carbon (POC) content, and the activities of C<sub>4</sub> pathway enzymes decreased in <em>P. obtusidens</em> under future acidified ocean condition (pH 7.8, 1000 μatm <em>p</em>CO<sub>2</sub>), but the activities of carbonic anhydrase (CA), ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), and superoxide dismutase (SOD) increased. Whereas cell growth rate, contents of Chl <em>a</em> and PON, and SOD activity altered insignificantly in <em>K. mikimotoi</em>, but contents of POC and total carbohydrate, and the activity of RubisCO increased while the activities of CA and C<sub>4</sub> pathway enzymes decreased. Transcriptomic analysis indicates that genes associated with antioxidative response, heat shock protein, proteasome, signal transduction, ribosome, and pH regulation were up-regulated in <em>P. obtusidens</em> but down-regulated in <em>K. mikimotoi</em>. Notably, the synthesis of soluble organic matter (i.e., spermidine and trehalose) was enhanced in <em>K. mikimotoi</em>, thereby regulating intracellular pH and improving stress resistance. This study highlights the divergent response of the armored and unarmored dinoflagellates to OA, with the unarmored dinoflagellate exhibiting a higher ability to withstand this stressor. Therefore, caution should be exercised when predicting the behavior and the eventual fate of dinoflagellates in the future acidified ocean.</div></div>\",\"PeriodicalId\":12897,\"journal\":{\"name\":\"Harmful Algae\",\"volume\":\"141 \",\"pages\":\"Article 102772\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Harmful Algae\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568988324002051\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Harmful Algae","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568988324002051","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

甲壳和无甲壳鞭毛藻细胞壁差异明显,正受到co2引起的海洋酸化(OA)升高的影响。然而,他们对OA的具体反应尚不清楚。在这项研究中,我们研究了在28天的时间里,有甲种原心菌(proorocentrum obtusidens)和无甲种mikimotokarenia对OA的生理和分子反应。结果表明,两种植物对OA的反应不同。在未来酸化的海洋环境(pH 7.8, 1000 μatm pCO2)下,P. obtusidens的细胞生长速率、颗粒有机碳(POC)含量和C4途径酶活性降低,但碳酸酐酶(CA)、核酮糖-1,5-二磷酸羧化酶/加氧酶(RubisCO)和超氧化物歧化酶(SOD)活性升高。细胞生长速率、Chl a和PON含量以及SOD活性变化不显著,但POC和总碳水化合物含量以及RubisCO活性升高,CA和C4途径酶活性降低。转录组学分析表明,与抗氧化反应、热休克蛋白、蛋白酶体、信号转导、核糖体和pH调节相关的基因在黑齿冬中上调,而在mikimotoi中下调。值得注意的是,mikimotoi提高了可溶性有机物(即亚精胺和海藻糖)的合成,从而调节了细胞内pH值,提高了抗逆性。这项研究强调了甲壳鞭毛虫和未甲壳鞭毛虫对OA的不同反应,未甲壳鞭毛虫表现出更高的抵抗这种应激源的能力。因此,在预测未来酸化海洋中鞭毛藻的行为和最终命运时,应谨慎行事。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Divergent responses of an armored and an unarmored dinoflagellate to ocean acidification

Divergent responses of an armored and an unarmored dinoflagellate to ocean acidification
Dinoflagellates, both armored and unarmored, with distinct cell wall difference, are being affected by elevated CO2-induced ocean acidification (OA). However, their specific responses to OA are not well understood. In this study, we investigated the physiological and molecular response of the armored species Prorocentrum obtusidens and the unarmored species Karenia mikimotoi to OA over a 28-day period. The results show that the two species responded differently to OA. Cell growth rate, particulate organic carbon (POC) content, and the activities of C4 pathway enzymes decreased in P. obtusidens under future acidified ocean condition (pH 7.8, 1000 μatm pCO2), but the activities of carbonic anhydrase (CA), ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), and superoxide dismutase (SOD) increased. Whereas cell growth rate, contents of Chl a and PON, and SOD activity altered insignificantly in K. mikimotoi, but contents of POC and total carbohydrate, and the activity of RubisCO increased while the activities of CA and C4 pathway enzymes decreased. Transcriptomic analysis indicates that genes associated with antioxidative response, heat shock protein, proteasome, signal transduction, ribosome, and pH regulation were up-regulated in P. obtusidens but down-regulated in K. mikimotoi. Notably, the synthesis of soluble organic matter (i.e., spermidine and trehalose) was enhanced in K. mikimotoi, thereby regulating intracellular pH and improving stress resistance. This study highlights the divergent response of the armored and unarmored dinoflagellates to OA, with the unarmored dinoflagellate exhibiting a higher ability to withstand this stressor. Therefore, caution should be exercised when predicting the behavior and the eventual fate of dinoflagellates in the future acidified ocean.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Harmful Algae
Harmful Algae 生物-海洋与淡水生物学
CiteScore
12.50
自引率
15.20%
发文量
122
审稿时长
7.5 months
期刊介绍: This journal provides a forum to promote knowledge of harmful microalgae and macroalgae, including cyanobacteria, as well as monitoring, management and control of these organisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信