西格陵兰中部林克造山带古元古代proø ven火成岩杂岩中火成岩和变质绿砾岩的保存

IF 3.2 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
A. Dziggel , L. Bramm , T.F. Kokfelt , J. Grocott , J.F.A. Diener
{"title":"西格陵兰中部林克造山带古元古代proø ven火成岩杂岩中火成岩和变质绿砾岩的保存","authors":"A. Dziggel ,&nbsp;L. Bramm ,&nbsp;T.F. Kokfelt ,&nbsp;J. Grocott ,&nbsp;J.F.A. Diener","doi":"10.1016/j.precamres.2024.107634","DOIUrl":null,"url":null,"abstract":"<div><div>The Paleoproterozoic Prøven Igneous Complex (PIC) of the Rinkian Orogen in central West Greenland comprises a suite of arc-related charnockite plutons, extending over an area of at least 7200 km<sup>2</sup>. The PIC was emplaced into paragneisses of the Karrat Group during a series of magmatic events between c. 1900 and 1850 Ma. Magmatism was accompanied by high-grade metamorphism and deformation, culminating in granulite facies peak conditions and partial melting at c. 1820 Ma. To unravel the conditions of charnockite formation and granulite facies metamorphism, a detailed petrographic study was carried out on samples from the PIC and the surrounding paragneisses. The rock types studied include i) charnockites from the massive PIC, ii) charnockites and migmatites from the layered lower PIC, iii) migmatites from the surrounding paragneisses, and iv) igneous enclaves from the lower PIC. Charnockites from the massive PIC generally show a magmatic, porphyritic texture and only minor macro-textural evidence of deformation. The lower PIC and paragneisses are both migmatized and exhibit extensive recrystallization with a solid-state crystal-plastic fabric. Igneous enclaves are found within the lower PIC and show an equigranular, igneous texture. Based on the dominant igneous texture it is interpreted that the massive PIC crystallized from a dry magma and was not significantly overprinted during peak metamorphism. Phase equilibrium modelling, Hb-Pl thermometry and Al-in-hornblende barometry constrain the PIC to have been emplaced at 680–795 °C and 4.2–5.4 kbar. By contrast, the lower PIC and paragneiss samples record granulite facies peak conditions of 785–805 °C and 3.4–4.0 kbar, suggesting that both charnockite magmatism and metamorphism took place at relatively shallow crustal levels. Our results are consistent with the P-T conditions recorded by the 1890–1880 Ma Qikiqtarjuaq Plutonic Suite, an arc-type charnockite intrusion on Baffin Island, Canada. A correlation between the tectonothermal events on Baffin Island and in the Rinkian Orogen is proposed, therefore relating the intrusion of the PIC to the collision of the Meta Incognita microcontinent and the Rae Craton.</div></div>","PeriodicalId":49674,"journal":{"name":"Precambrian Research","volume":"417 ","pages":"Article 107634"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preservation of igneous and metamorphic charnockites in the Paleoproterozoic Prøven Igneous Complex, Rinkian Orogen, central West Greenland\",\"authors\":\"A. Dziggel ,&nbsp;L. Bramm ,&nbsp;T.F. Kokfelt ,&nbsp;J. Grocott ,&nbsp;J.F.A. Diener\",\"doi\":\"10.1016/j.precamres.2024.107634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Paleoproterozoic Prøven Igneous Complex (PIC) of the Rinkian Orogen in central West Greenland comprises a suite of arc-related charnockite plutons, extending over an area of at least 7200 km<sup>2</sup>. The PIC was emplaced into paragneisses of the Karrat Group during a series of magmatic events between c. 1900 and 1850 Ma. Magmatism was accompanied by high-grade metamorphism and deformation, culminating in granulite facies peak conditions and partial melting at c. 1820 Ma. To unravel the conditions of charnockite formation and granulite facies metamorphism, a detailed petrographic study was carried out on samples from the PIC and the surrounding paragneisses. The rock types studied include i) charnockites from the massive PIC, ii) charnockites and migmatites from the layered lower PIC, iii) migmatites from the surrounding paragneisses, and iv) igneous enclaves from the lower PIC. Charnockites from the massive PIC generally show a magmatic, porphyritic texture and only minor macro-textural evidence of deformation. The lower PIC and paragneisses are both migmatized and exhibit extensive recrystallization with a solid-state crystal-plastic fabric. Igneous enclaves are found within the lower PIC and show an equigranular, igneous texture. Based on the dominant igneous texture it is interpreted that the massive PIC crystallized from a dry magma and was not significantly overprinted during peak metamorphism. Phase equilibrium modelling, Hb-Pl thermometry and Al-in-hornblende barometry constrain the PIC to have been emplaced at 680–795 °C and 4.2–5.4 kbar. By contrast, the lower PIC and paragneiss samples record granulite facies peak conditions of 785–805 °C and 3.4–4.0 kbar, suggesting that both charnockite magmatism and metamorphism took place at relatively shallow crustal levels. Our results are consistent with the P-T conditions recorded by the 1890–1880 Ma Qikiqtarjuaq Plutonic Suite, an arc-type charnockite intrusion on Baffin Island, Canada. A correlation between the tectonothermal events on Baffin Island and in the Rinkian Orogen is proposed, therefore relating the intrusion of the PIC to the collision of the Meta Incognita microcontinent and the Rae Craton.</div></div>\",\"PeriodicalId\":49674,\"journal\":{\"name\":\"Precambrian Research\",\"volume\":\"417 \",\"pages\":\"Article 107634\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precambrian Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301926824003474\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precambrian Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301926824003474","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

格陵兰岛西部中部林克造山带的古元古代proø ven火成岩杂岩(PIC)由一套与弧相关的charnockite岩体组成,延伸面积至少为7200 km2。在大约1900年至1850年Ma的一系列岩浆活动期间,PIC被安置在卡拉特群的副岩中。岩浆活动伴随着高变质作用和变形作用,在1820 Ma时达到麻粒岩相峰值条件和部分熔融。为了揭示砂硝岩的形成条件和麻粒岩相变质作用,对PIC及其周围的副长岩进行了详细的岩石学研究。研究的岩石类型包括:1)块状烃源岩中的charnockites, 2)层状烃源岩下的charnockites和混杂岩,3)周围副长岩中的混杂岩,4)烃源岩下的火成岩包体。来自大质量PIC的Charnockites通常显示岩浆、斑岩结构,只有少量的宏观结构变形证据。较低的PIC和副相都是混化的,并表现出广泛的再结晶,具有固态晶体-塑料织物。火成岩包裹体位于PIC下部,呈等粒状火成岩结构。根据主要的火成岩结构,解释了大质量PIC是由干燥岩浆结晶而成,在变质峰期没有明显的叠印。相平衡模型,Hb-Pl测温和al -in- hornblode气压测定法约束PIC放置在680-795°C和4.2-5.4 kbar。而下PIC和副辉岩则记录了785 ~ 805℃、3.4 ~ 4.0 kbar的麻粒岩相峰值条件,表明砂粒岩岩浆作用和变质作用均发生在相对较浅的地壳水平。本文的研究结果与加拿大巴芬岛一个弧型绿绿岩侵入体Ma Qikiqtarjuaq深成岩套(Ma Qikiqtarjuaq)所记录的P-T条件一致。在巴芬岛和林克林造山带的构造热事件之间进行了对比,从而将PIC的入侵与Meta Incognita微大陆和Rae克拉通的碰撞联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preservation of igneous and metamorphic charnockites in the Paleoproterozoic Prøven Igneous Complex, Rinkian Orogen, central West Greenland
The Paleoproterozoic Prøven Igneous Complex (PIC) of the Rinkian Orogen in central West Greenland comprises a suite of arc-related charnockite plutons, extending over an area of at least 7200 km2. The PIC was emplaced into paragneisses of the Karrat Group during a series of magmatic events between c. 1900 and 1850 Ma. Magmatism was accompanied by high-grade metamorphism and deformation, culminating in granulite facies peak conditions and partial melting at c. 1820 Ma. To unravel the conditions of charnockite formation and granulite facies metamorphism, a detailed petrographic study was carried out on samples from the PIC and the surrounding paragneisses. The rock types studied include i) charnockites from the massive PIC, ii) charnockites and migmatites from the layered lower PIC, iii) migmatites from the surrounding paragneisses, and iv) igneous enclaves from the lower PIC. Charnockites from the massive PIC generally show a magmatic, porphyritic texture and only minor macro-textural evidence of deformation. The lower PIC and paragneisses are both migmatized and exhibit extensive recrystallization with a solid-state crystal-plastic fabric. Igneous enclaves are found within the lower PIC and show an equigranular, igneous texture. Based on the dominant igneous texture it is interpreted that the massive PIC crystallized from a dry magma and was not significantly overprinted during peak metamorphism. Phase equilibrium modelling, Hb-Pl thermometry and Al-in-hornblende barometry constrain the PIC to have been emplaced at 680–795 °C and 4.2–5.4 kbar. By contrast, the lower PIC and paragneiss samples record granulite facies peak conditions of 785–805 °C and 3.4–4.0 kbar, suggesting that both charnockite magmatism and metamorphism took place at relatively shallow crustal levels. Our results are consistent with the P-T conditions recorded by the 1890–1880 Ma Qikiqtarjuaq Plutonic Suite, an arc-type charnockite intrusion on Baffin Island, Canada. A correlation between the tectonothermal events on Baffin Island and in the Rinkian Orogen is proposed, therefore relating the intrusion of the PIC to the collision of the Meta Incognita microcontinent and the Rae Craton.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Precambrian Research
Precambrian Research 地学-地球科学综合
CiteScore
7.20
自引率
28.90%
发文量
325
审稿时长
12 months
期刊介绍: Precambrian Research publishes studies on all aspects of the early stages of the composition, structure and evolution of the Earth and its planetary neighbours. With a focus on process-oriented and comparative studies, it covers, but is not restricted to, subjects such as: (1) Chemical, biological, biochemical and cosmochemical evolution; the origin of life; the evolution of the oceans and atmosphere; the early fossil record; palaeobiology; (2) Geochronology and isotope and elemental geochemistry; (3) Precambrian mineral deposits; (4) Geophysical aspects of the early Earth and Precambrian terrains; (5) Nature, formation and evolution of the Precambrian lithosphere and mantle including magmatic, depositional, metamorphic and tectonic processes. In addition, the editors particularly welcome integrated process-oriented studies that involve a combination of the above fields and comparative studies that demonstrate the effect of Precambrian evolution on Phanerozoic earth system processes. Regional and localised studies of Precambrian phenomena are considered appropriate only when the detail and quality allow illustration of a wider process, or when significant gaps in basic knowledge of a particular area can be filled.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信