R. Srimathi , N.V.S.S.Seshagiri Rao , A. Merlin , R. Kiruthika , A. Selvaraj , Omar H. Abdelkader , Chandra Sekhar Dash , S. Revathi , Anis Ahamed , Jothi Ramalingam Rajabathar , M. Sundararajan , S. Yuvaraj , L. Rajadurai
{"title":"掺铝MgFe2O4纳米颗粒的结构、磁性、光学和介电特性研究","authors":"R. Srimathi , N.V.S.S.Seshagiri Rao , A. Merlin , R. Kiruthika , A. Selvaraj , Omar H. Abdelkader , Chandra Sekhar Dash , S. Revathi , Anis Ahamed , Jothi Ramalingam Rajabathar , M. Sundararajan , S. Yuvaraj , L. Rajadurai","doi":"10.1016/j.solidstatesciences.2024.107761","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, MgAlₓFe₂₋ₓO₄ (0 ≤ x ≤ 0.5) nanoparticles were synthesized via the combustion method to investigate the structural, magnetic, optical, and dielectric effects of Al doping on MgFe₂O₄ ferrite. X-ray diffraction (XRD) analysis confirmed the successful formation of the MgFe₂O₄ crystalline phase, with crystallite sizes ranging from 34 to 45 nm. Field emission scanning electron microscopy (FE-SEM) revealed a spherical morphology, and energy-dispersive X-ray spectroscopy (EDX) confirmed the presence of magnesium, iron, oxygen, and the introduced aluminum. Diffuse reflectance spectroscopy measured an optical band gap between 2.03 and 2.13 eV, indicating Al's influence on electronic properties. Dielectric measurements showed that the Al-doped samples exhibited enhanced dielectric constants and AC conductivity compared to the undoped ferrite, making them promising candidates for optoelectronic, photocatalytic, and energy storage applications. These results highlight the potential of Al-doped MgFe₂O₄ nanoparticles in advancing functional materials for data storage and energy-related technologies.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"159 ","pages":"Article 107761"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of structural, magnetic, optical and dielectric characteristics of Al-doped MgFe2O4 nanoparticles\",\"authors\":\"R. Srimathi , N.V.S.S.Seshagiri Rao , A. Merlin , R. Kiruthika , A. Selvaraj , Omar H. Abdelkader , Chandra Sekhar Dash , S. Revathi , Anis Ahamed , Jothi Ramalingam Rajabathar , M. Sundararajan , S. Yuvaraj , L. Rajadurai\",\"doi\":\"10.1016/j.solidstatesciences.2024.107761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, MgAlₓFe₂₋ₓO₄ (0 ≤ x ≤ 0.5) nanoparticles were synthesized via the combustion method to investigate the structural, magnetic, optical, and dielectric effects of Al doping on MgFe₂O₄ ferrite. X-ray diffraction (XRD) analysis confirmed the successful formation of the MgFe₂O₄ crystalline phase, with crystallite sizes ranging from 34 to 45 nm. Field emission scanning electron microscopy (FE-SEM) revealed a spherical morphology, and energy-dispersive X-ray spectroscopy (EDX) confirmed the presence of magnesium, iron, oxygen, and the introduced aluminum. Diffuse reflectance spectroscopy measured an optical band gap between 2.03 and 2.13 eV, indicating Al's influence on electronic properties. Dielectric measurements showed that the Al-doped samples exhibited enhanced dielectric constants and AC conductivity compared to the undoped ferrite, making them promising candidates for optoelectronic, photocatalytic, and energy storage applications. These results highlight the potential of Al-doped MgFe₂O₄ nanoparticles in advancing functional materials for data storage and energy-related technologies.</div></div>\",\"PeriodicalId\":432,\"journal\":{\"name\":\"Solid State Sciences\",\"volume\":\"159 \",\"pages\":\"Article 107761\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1293255824003261\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255824003261","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Investigation of structural, magnetic, optical and dielectric characteristics of Al-doped MgFe2O4 nanoparticles
In this study, MgAlₓFe₂₋ₓO₄ (0 ≤ x ≤ 0.5) nanoparticles were synthesized via the combustion method to investigate the structural, magnetic, optical, and dielectric effects of Al doping on MgFe₂O₄ ferrite. X-ray diffraction (XRD) analysis confirmed the successful formation of the MgFe₂O₄ crystalline phase, with crystallite sizes ranging from 34 to 45 nm. Field emission scanning electron microscopy (FE-SEM) revealed a spherical morphology, and energy-dispersive X-ray spectroscopy (EDX) confirmed the presence of magnesium, iron, oxygen, and the introduced aluminum. Diffuse reflectance spectroscopy measured an optical band gap between 2.03 and 2.13 eV, indicating Al's influence on electronic properties. Dielectric measurements showed that the Al-doped samples exhibited enhanced dielectric constants and AC conductivity compared to the undoped ferrite, making them promising candidates for optoelectronic, photocatalytic, and energy storage applications. These results highlight the potential of Al-doped MgFe₂O₄ nanoparticles in advancing functional materials for data storage and energy-related technologies.
期刊介绍:
Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments.
Key topics for stand-alone papers and special issues:
-Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials
-Physical properties, emphasizing but not limited to the electrical, magnetical and optical features
-Materials related to information technology and energy and environmental sciences.
The journal publishes feature articles from experts in the field upon invitation.
Solid State Sciences - your gateway to energy-related materials.