从观测数据对tallis全息暗能量的一般约束

IF 5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Artyom V. Astashenok, Alexander S. Tepliakov
{"title":"从观测数据对tallis全息暗能量的一般约束","authors":"Artyom V. Astashenok,&nbsp;Alexander S. Tepliakov","doi":"10.1016/j.dark.2024.101747","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate Tsallis holographic dark energy (THDE) model in light of modern observations of supernovae, Hubble parameter measurements, data for baryon acoustic oscillations and fluctuations of matter density. The dark energy density for THDE model is written as <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><mn>3</mn><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>4</mn><mo>−</mo><mn>2</mn><mi>γ</mi></mrow></msup></mrow></math></span> where <span><math><mi>C</mi></math></span> and <span><math><mi>γ</mi></math></span> are some constants. Scale <span><math><mi>L</mi></math></span> is infrared cut-off length for which we use the event horizon. For analysis of type Ia supernovae (SNeIa) data Pantheon+ samples are involved. Dark Energy Spectroscopic Instrument (DESI) 2024 measurements serves as source of data about ratios between sound horizon <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> and Hubble (<span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>H</mi></mrow></msub></math></span>) or volume averaged (<span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>V</mi></mrow></msub></math></span>) distances. The updated dataset of Hubble parameter for various redshift is also used in our analysis. Finally we consider the dependence of matter density fluctuations in past from redshift. The standard strategy of <span><math><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> minimizing allows to estimate the optimal values of parameters (<span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>d</mi><mi>e</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) for some fixed values of <span><math><mi>C</mi></math></span> and <span><math><mi>γ</mi></math></span>. One note that best-fit values for parameters <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> from Hubble parameter and SNeIa data are more close than in standard <span><math><mi>Λ</mi></math></span>CDM model for some <span><math><mi>C</mi></math></span> and <span><math><mi>γ</mi></math></span> although problem of Hubble tension remains unsolved. The combined data analysis also gives slightly better results in comparison with standard cosmology. We include in our consideration the possible interaction between matter and holographic component and estimate the acceptable interval of model parameters in this case.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"47 ","pages":"Article 101747"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General constraints on Tsallis holographic dark energy from observational data\",\"authors\":\"Artyom V. Astashenok,&nbsp;Alexander S. Tepliakov\",\"doi\":\"10.1016/j.dark.2024.101747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate Tsallis holographic dark energy (THDE) model in light of modern observations of supernovae, Hubble parameter measurements, data for baryon acoustic oscillations and fluctuations of matter density. The dark energy density for THDE model is written as <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><mn>3</mn><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>4</mn><mo>−</mo><mn>2</mn><mi>γ</mi></mrow></msup></mrow></math></span> where <span><math><mi>C</mi></math></span> and <span><math><mi>γ</mi></math></span> are some constants. Scale <span><math><mi>L</mi></math></span> is infrared cut-off length for which we use the event horizon. For analysis of type Ia supernovae (SNeIa) data Pantheon+ samples are involved. Dark Energy Spectroscopic Instrument (DESI) 2024 measurements serves as source of data about ratios between sound horizon <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> and Hubble (<span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>H</mi></mrow></msub></math></span>) or volume averaged (<span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>V</mi></mrow></msub></math></span>) distances. The updated dataset of Hubble parameter for various redshift is also used in our analysis. Finally we consider the dependence of matter density fluctuations in past from redshift. The standard strategy of <span><math><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> minimizing allows to estimate the optimal values of parameters (<span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>d</mi><mi>e</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) for some fixed values of <span><math><mi>C</mi></math></span> and <span><math><mi>γ</mi></math></span>. One note that best-fit values for parameters <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> from Hubble parameter and SNeIa data are more close than in standard <span><math><mi>Λ</mi></math></span>CDM model for some <span><math><mi>C</mi></math></span> and <span><math><mi>γ</mi></math></span> although problem of Hubble tension remains unsolved. The combined data analysis also gives slightly better results in comparison with standard cosmology. We include in our consideration the possible interaction between matter and holographic component and estimate the acceptable interval of model parameters in this case.</div></div>\",\"PeriodicalId\":48774,\"journal\":{\"name\":\"Physics of the Dark Universe\",\"volume\":\"47 \",\"pages\":\"Article 101747\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Dark Universe\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212686424003303\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686424003303","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们结合现代超新星观测、哈勃参数测量、重子声学振荡和物质密度波动的数据,对Tsallis全息暗能量模型进行了研究。THDE模型的暗能量密度为ρd=3C2/L4−2γ,其中C和γ为常数。尺度L是我们使用视界的红外截止长度。对于Ia型超新星(SNeIa)数据的分析涉及Pantheon+样本。暗能量光谱仪器(DESI) 2024测量结果作为声视界rd与哈勃(dH)或体积平均(dV)距离之比的数据来源。我们的分析还使用了更新后的各种红移的哈勃参数数据集。最后,我们考虑了红移对过去物质密度波动的依赖性。标准的χ2最小化策略允许对C和γ的某些固定值估计参数(Ωde和H0)的最优值。值得注意的是,对于某些C和γ,哈勃参数和SNeIa数据的参数H0的最佳拟合值比标准ΛCDM模型更接近,尽管哈勃张力问题尚未解决。与标准宇宙学相比,综合数据分析也给出了稍好的结果。我们考虑了物质与全息分量之间可能的相互作用,并估计了在这种情况下模型参数的可接受区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General constraints on Tsallis holographic dark energy from observational data
We investigate Tsallis holographic dark energy (THDE) model in light of modern observations of supernovae, Hubble parameter measurements, data for baryon acoustic oscillations and fluctuations of matter density. The dark energy density for THDE model is written as ρd=3C2/L42γ where C and γ are some constants. Scale L is infrared cut-off length for which we use the event horizon. For analysis of type Ia supernovae (SNeIa) data Pantheon+ samples are involved. Dark Energy Spectroscopic Instrument (DESI) 2024 measurements serves as source of data about ratios between sound horizon rd and Hubble (dH) or volume averaged (dV) distances. The updated dataset of Hubble parameter for various redshift is also used in our analysis. Finally we consider the dependence of matter density fluctuations in past from redshift. The standard strategy of χ2 minimizing allows to estimate the optimal values of parameters (Ωde and H0) for some fixed values of C and γ. One note that best-fit values for parameters H0 from Hubble parameter and SNeIa data are more close than in standard ΛCDM model for some C and γ although problem of Hubble tension remains unsolved. The combined data analysis also gives slightly better results in comparison with standard cosmology. We include in our consideration the possible interaction between matter and holographic component and estimate the acceptable interval of model parameters in this case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of the Dark Universe
Physics of the Dark Universe ASTRONOMY & ASTROPHYSICS-
CiteScore
9.60
自引率
7.30%
发文量
118
审稿时长
61 days
期刊介绍: Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact. The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信