主动控制谣言:当预算受限时,印象很重要

IF 4.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Pengfei Xu, Zhiyong Peng, Liwei Wang
{"title":"主动控制谣言:当预算受限时,印象很重要","authors":"Pengfei Xu,&nbsp;Zhiyong Peng,&nbsp;Liwei Wang","doi":"10.1016/j.comcom.2024.108010","DOIUrl":null,"url":null,"abstract":"<div><div>The proliferation of rumors in online networks poses significant public safety risks and economic repercussions. Addressing this, we investigate the understudied aspect of rumor control: the interplay between influence block effect and user impression counts under budget constraints. We introduce two problem variants, RCIC and RCICB, tailored for diverse application contexts. Our study confronts two inherent challenges: the NP-hard nature of the problems and the non-submodularity of the influence block, which precludes direct greedy approaches. We develop a novel branch-and-bound framework for RCIC, achieving a (<span><math><mrow><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>e</mi><mo>−</mo><mi>ϵ</mi></mrow></math></span>) approximation ratio, and enhance its efficacy with a progressive upper bound estimation, refining the ratio to (<span><math><mrow><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>e</mi><mo>−</mo><mi>ϵ</mi><mo>−</mo><mi>ρ</mi></mrow></math></span>). Extending these techniques to RCICB, we attain approximation ratios of (<span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>e</mi><mo>)</mo></mrow><mo>−</mo><mi>ϵ</mi></mrow></math></span>) and (<span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>e</mi><mo>−</mo><mi>ρ</mi><mo>)</mo></mrow><mo>−</mo><mi>ϵ</mi></mrow></math></span>). We conduct experiments on real-world datasets to verify the efficiency, effectiveness, and scalability of our methods.</div></div>","PeriodicalId":55224,"journal":{"name":"Computer Communications","volume":"230 ","pages":"Article 108010"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards proactive rumor control: When a budget constraint meets impression counts\",\"authors\":\"Pengfei Xu,&nbsp;Zhiyong Peng,&nbsp;Liwei Wang\",\"doi\":\"10.1016/j.comcom.2024.108010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The proliferation of rumors in online networks poses significant public safety risks and economic repercussions. Addressing this, we investigate the understudied aspect of rumor control: the interplay between influence block effect and user impression counts under budget constraints. We introduce two problem variants, RCIC and RCICB, tailored for diverse application contexts. Our study confronts two inherent challenges: the NP-hard nature of the problems and the non-submodularity of the influence block, which precludes direct greedy approaches. We develop a novel branch-and-bound framework for RCIC, achieving a (<span><math><mrow><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>e</mi><mo>−</mo><mi>ϵ</mi></mrow></math></span>) approximation ratio, and enhance its efficacy with a progressive upper bound estimation, refining the ratio to (<span><math><mrow><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>e</mi><mo>−</mo><mi>ϵ</mi><mo>−</mo><mi>ρ</mi></mrow></math></span>). Extending these techniques to RCICB, we attain approximation ratios of (<span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>e</mi><mo>)</mo></mrow><mo>−</mo><mi>ϵ</mi></mrow></math></span>) and (<span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>e</mi><mo>−</mo><mi>ρ</mi><mo>)</mo></mrow><mo>−</mo><mi>ϵ</mi></mrow></math></span>). We conduct experiments on real-world datasets to verify the efficiency, effectiveness, and scalability of our methods.</div></div>\",\"PeriodicalId\":55224,\"journal\":{\"name\":\"Computer Communications\",\"volume\":\"230 \",\"pages\":\"Article 108010\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140366424003578\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140366424003578","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

网络谣言的泛滥带来了重大的公共安全风险和经济影响。为了解决这个问题,我们研究了谣言控制中尚未得到充分研究的方面:在预算限制下,影响阻塞效应和用户印象数之间的相互作用。我们介绍了两个问题变体,RCIC和RCICB,它们是为不同的应用程序上下文量身定制的。我们的研究面临着两个固有的挑战:问题的NP-hard性质和影响块的非子模块性,这排除了直接贪婪方法。我们为RCIC开发了一种新的分支定界框架,实现了(1−1/e−ε)近似比,并通过渐进式上界估计增强了其有效性,将该比率改进为(1−1/e−ε−ρ)。将这些技术扩展到RCICB,我们得到近似比值为(12(1−1/e)−御柱)和(12(1−1/e−ρ)−御柱)。我们在真实世界的数据集上进行实验,以验证我们方法的效率、有效性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards proactive rumor control: When a budget constraint meets impression counts
The proliferation of rumors in online networks poses significant public safety risks and economic repercussions. Addressing this, we investigate the understudied aspect of rumor control: the interplay between influence block effect and user impression counts under budget constraints. We introduce two problem variants, RCIC and RCICB, tailored for diverse application contexts. Our study confronts two inherent challenges: the NP-hard nature of the problems and the non-submodularity of the influence block, which precludes direct greedy approaches. We develop a novel branch-and-bound framework for RCIC, achieving a (11/eϵ) approximation ratio, and enhance its efficacy with a progressive upper bound estimation, refining the ratio to (11/eϵρ). Extending these techniques to RCICB, we attain approximation ratios of (12(11/e)ϵ) and (12(11/eρ)ϵ). We conduct experiments on real-world datasets to verify the efficiency, effectiveness, and scalability of our methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Communications
Computer Communications 工程技术-电信学
CiteScore
14.10
自引率
5.00%
发文量
397
审稿时长
66 days
期刊介绍: Computer and Communications networks are key infrastructures of the information society with high socio-economic value as they contribute to the correct operations of many critical services (from healthcare to finance and transportation). Internet is the core of today''s computer-communication infrastructures. This has transformed the Internet, from a robust network for data transfer between computers, to a global, content-rich, communication and information system where contents are increasingly generated by the users, and distributed according to human social relations. Next-generation network technologies, architectures and protocols are therefore required to overcome the limitations of the legacy Internet and add new capabilities and services. The future Internet should be ubiquitous, secure, resilient, and closer to human communication paradigms. Computer Communications is a peer-reviewed international journal that publishes high-quality scientific articles (both theory and practice) and survey papers covering all aspects of future computer communication networks (on all layers, except the physical layer), with a special attention to the evolution of the Internet architecture, protocols, services, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信