广义最小上/最小下多面体

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Cécile Rottner
{"title":"广义最小上/最小下多面体","authors":"Cécile Rottner","doi":"10.1016/j.disopt.2024.100866","DOIUrl":null,"url":null,"abstract":"<div><div>Consider a time horizon and a set of <span><math><mi>N</mi></math></span> possible states for a given system. The system must be in exactly one state at a time. In this paper, we generalize classical results on min-up/min-down constraints for a 2-state system to an <span><math><mi>N</mi></math></span>-state system with <span><math><mrow><mi>N</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. The minimum-time constraints enforce that if the system switches to state <span><math><mi>i</mi></math></span> at time <span><math><mi>t</mi></math></span>, then it must remain in state <span><math><mi>i</mi></math></span> for a minimum number of time steps. The minimum-time polytope is defined as the convex hull of integer solutions satisfying the minimum-time constraints. A variant of minimum-time constraints is also considered, namely the no-spike constraints. They enforce that if state <span><math><mi>i</mi></math></span> is switched on at time <span><math><mi>t</mi></math></span>, the system must remain on states <span><math><mrow><mi>j</mi><mo>≥</mo><mi>i</mi></mrow></math></span> during a minimum time. Symmetrically, they also enforce that if state <span><math><mi>i</mi></math></span> is switched off at time <span><math><mi>t</mi></math></span>, the system must remain on states <span><math><mrow><mi>j</mi><mo>&lt;</mo><mi>i</mi></mrow></math></span> during a minimum time. The no-spike polytope is defined as the convex hull of integer solutions satisfying the no-spike constraints. For both the minimum-time polytope and the no-spike polytope, we introduce families of valid inequalities. We prove that these inequalities are facet-defining and lead to a complete description of polynomial size for each polytope.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"55 ","pages":"Article 100866"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized min-up/min-down polytopes\",\"authors\":\"Cécile Rottner\",\"doi\":\"10.1016/j.disopt.2024.100866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Consider a time horizon and a set of <span><math><mi>N</mi></math></span> possible states for a given system. The system must be in exactly one state at a time. In this paper, we generalize classical results on min-up/min-down constraints for a 2-state system to an <span><math><mi>N</mi></math></span>-state system with <span><math><mrow><mi>N</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. The minimum-time constraints enforce that if the system switches to state <span><math><mi>i</mi></math></span> at time <span><math><mi>t</mi></math></span>, then it must remain in state <span><math><mi>i</mi></math></span> for a minimum number of time steps. The minimum-time polytope is defined as the convex hull of integer solutions satisfying the minimum-time constraints. A variant of minimum-time constraints is also considered, namely the no-spike constraints. They enforce that if state <span><math><mi>i</mi></math></span> is switched on at time <span><math><mi>t</mi></math></span>, the system must remain on states <span><math><mrow><mi>j</mi><mo>≥</mo><mi>i</mi></mrow></math></span> during a minimum time. Symmetrically, they also enforce that if state <span><math><mi>i</mi></math></span> is switched off at time <span><math><mi>t</mi></math></span>, the system must remain on states <span><math><mrow><mi>j</mi><mo>&lt;</mo><mi>i</mi></mrow></math></span> during a minimum time. The no-spike polytope is defined as the convex hull of integer solutions satisfying the no-spike constraints. For both the minimum-time polytope and the no-spike polytope, we introduce families of valid inequalities. We prove that these inequalities are facet-defining and lead to a complete description of polynomial size for each polytope.</div></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"55 \",\"pages\":\"Article 100866\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528624000458\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528624000458","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个给定系统的时间范围和一组N种可能状态。系统每次只能处于一种状态。在本文中,我们将经典的关于2态系统最小上/最小下约束的结果推广到N≥3的N态系统。最小时间约束强制要求,如果系统在时间t切换到状态i,那么它必须保持状态i的最小时间步长。最小时间多面体定义为满足最小时间约束的整数解的凸包。还考虑了最小时间约束的一种变体,即无尖峰约束。它们强制要求如果状态i在时间t开启,系统必须在最小时间内保持状态j≥i。对称地,它们还强制执行,如果状态i在时间t关闭,则系统必须在最小时间内保持状态j<;i。无尖峰多面体定义为满足无尖峰约束的整数解的凸包。对于最小时间多面体和无尖峰多面体,我们引入了有效不等式族。我们证明了这些不等式是面定义的,并给出了每个多面体多项式大小的完整描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized min-up/min-down polytopes
Consider a time horizon and a set of N possible states for a given system. The system must be in exactly one state at a time. In this paper, we generalize classical results on min-up/min-down constraints for a 2-state system to an N-state system with N3. The minimum-time constraints enforce that if the system switches to state i at time t, then it must remain in state i for a minimum number of time steps. The minimum-time polytope is defined as the convex hull of integer solutions satisfying the minimum-time constraints. A variant of minimum-time constraints is also considered, namely the no-spike constraints. They enforce that if state i is switched on at time t, the system must remain on states ji during a minimum time. Symmetrically, they also enforce that if state i is switched off at time t, the system must remain on states j<i during a minimum time. The no-spike polytope is defined as the convex hull of integer solutions satisfying the no-spike constraints. For both the minimum-time polytope and the no-spike polytope, we introduce families of valid inequalities. We prove that these inequalities are facet-defining and lead to a complete description of polynomial size for each polytope.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信