正则二部图和次三次图上的合着色的多项式时间算法

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Luerbio Faria, Mauro Nigro, Diana Sasaki
{"title":"正则二部图和次三次图上的合着色的多项式时间算法","authors":"Luerbio Faria,&nbsp;Mauro Nigro,&nbsp;Diana Sasaki","doi":"10.1016/j.disopt.2024.100865","DOIUrl":null,"url":null,"abstract":"<div><div>In 1988, Chetwynd and Hilton observed that a <span><math><mrow><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-total coloring induces a vertex coloring in the graph, they called it conformable. A <span><math><mrow><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-vertex coloring of a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> is called <em>conformable</em> if the number of color classes of parity different from that of <span><math><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow></math></span> is at most the deficiency <span><math><mrow><mo>def</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></msub><mrow><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span>, where <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> is the degree of a vertex <span><math><mi>v</mi></math></span> of <span><math><mi>V</mi></math></span>. In 1994, McDiarmid and Sánchez-Arroyo proved that deciding whether a graph <span><math><mi>G</mi></math></span> has <span><math><mrow><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-total coloring is NP-complete even when <span><math><mi>G</mi></math></span> is <span><math><mi>k</mi></math></span>-regular bipartite with <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. However, the time-complexity of the problem of determining whether a graph admits a conformable coloring (<span>Conformability</span> problem) remains unknown. In this paper, we prove that <span>Conformability</span> problem is polynomial solvable for the class of <span><math><mi>k</mi></math></span>-regular bipartite and for the class of subcubic graphs.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"55 ","pages":"Article 100865"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A polynomial-time algorithm for conformable coloring on regular bipartite and subcubic graphs\",\"authors\":\"Luerbio Faria,&nbsp;Mauro Nigro,&nbsp;Diana Sasaki\",\"doi\":\"10.1016/j.disopt.2024.100865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In 1988, Chetwynd and Hilton observed that a <span><math><mrow><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-total coloring induces a vertex coloring in the graph, they called it conformable. A <span><math><mrow><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-vertex coloring of a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> is called <em>conformable</em> if the number of color classes of parity different from that of <span><math><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow></math></span> is at most the deficiency <span><math><mrow><mo>def</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></msub><mrow><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span>, where <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> is the degree of a vertex <span><math><mi>v</mi></math></span> of <span><math><mi>V</mi></math></span>. In 1994, McDiarmid and Sánchez-Arroyo proved that deciding whether a graph <span><math><mi>G</mi></math></span> has <span><math><mrow><mo>(</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-total coloring is NP-complete even when <span><math><mi>G</mi></math></span> is <span><math><mi>k</mi></math></span>-regular bipartite with <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. However, the time-complexity of the problem of determining whether a graph admits a conformable coloring (<span>Conformability</span> problem) remains unknown. In this paper, we prove that <span>Conformability</span> problem is polynomial solvable for the class of <span><math><mi>k</mi></math></span>-regular bipartite and for the class of subcubic graphs.</div></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"55 \",\"pages\":\"Article 100865\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528624000446\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528624000446","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在1988年,Chetwynd和Hilton观察到(Δ+1)-total着色在图中引起顶点着色,他们称之为顺应着色。图G=(V,E)的A (Δ+1)-顶点着色,如果与|V|的奇偶性不同的色类数最多等于G的缺陷def(G)=∑V∈V(Δ−dG(V)),其中dG(V)是V的顶点V的度。1994年,McDiarmid和Sánchez-Arroyo证明了判定图G是否具有(Δ+1)-全着色是np完全的,即使G是k≥3的k正则二部。然而,确定图是否允许符合着色问题(符合问题)的时间复杂度仍然是未知的。本文证明了k正则二部图和次三次图的一致性问题是多项式可解的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A polynomial-time algorithm for conformable coloring on regular bipartite and subcubic graphs
In 1988, Chetwynd and Hilton observed that a (Δ+1)-total coloring induces a vertex coloring in the graph, they called it conformable. A (Δ+1)-vertex coloring of a graph G=(V,E) is called conformable if the number of color classes of parity different from that of |V| is at most the deficiency def(G)=vV(ΔdG(v)) of G, where dG(v) is the degree of a vertex v of V. In 1994, McDiarmid and Sánchez-Arroyo proved that deciding whether a graph G has (Δ+1)-total coloring is NP-complete even when G is k-regular bipartite with k3. However, the time-complexity of the problem of determining whether a graph admits a conformable coloring (Conformability problem) remains unknown. In this paper, we prove that Conformability problem is polynomial solvable for the class of k-regular bipartite and for the class of subcubic graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信