用多阶段排队模型对计算机处理器中的信息流进行建模

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Mohammad Daneshvar , Richard C. Barnard , Cory Hauck , Ilya Timofeyev
{"title":"用多阶段排队模型对计算机处理器中的信息流进行建模","authors":"Mohammad Daneshvar ,&nbsp;Richard C. Barnard ,&nbsp;Cory Hauck ,&nbsp;Ilya Timofeyev","doi":"10.1016/j.physd.2024.134446","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce a nonlinear stochastic model to describe the propagation of information inside a computer processor. In this model, a computational task is divided into stages, and information can flow from one stage to another. The model is formulated as a spatially-extended, continuous-time Markov chain where space represents different stages. This model is equivalent to a spatially-extended version of the M/M/s queue. The main modeling feature is the throttling function which describes the processor slowdown when the amount of information falls below a certain threshold. We derive the stationary distribution for this stochastic model and develop a closure for a deterministic ODE system that approximates the evolution of the mean and variance of the stochastic model. We demonstrate the validity of the closure with numerical simulations.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"471 ","pages":"Article 134446"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling information flow in a computer processor with a multi-stage queuing model\",\"authors\":\"Mohammad Daneshvar ,&nbsp;Richard C. Barnard ,&nbsp;Cory Hauck ,&nbsp;Ilya Timofeyev\",\"doi\":\"10.1016/j.physd.2024.134446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce a nonlinear stochastic model to describe the propagation of information inside a computer processor. In this model, a computational task is divided into stages, and information can flow from one stage to another. The model is formulated as a spatially-extended, continuous-time Markov chain where space represents different stages. This model is equivalent to a spatially-extended version of the M/M/s queue. The main modeling feature is the throttling function which describes the processor slowdown when the amount of information falls below a certain threshold. We derive the stationary distribution for this stochastic model and develop a closure for a deterministic ODE system that approximates the evolution of the mean and variance of the stochastic model. We demonstrate the validity of the closure with numerical simulations.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"471 \",\"pages\":\"Article 134446\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924003968\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003968","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文引入一个非线性随机模型来描述信息在计算机处理器内部的传播。在该模型中,计算任务被划分为多个阶段,信息可以从一个阶段流向另一个阶段。该模型被表述为空间扩展的连续时间马尔可夫链,其中空间代表不同的阶段。这个模型相当于M/M/s队列的空间扩展版本。主要的建模特性是节流功能,它描述了当信息量低于某个阈值时处理器的减速。我们推导了该随机模型的平稳分布,并开发了一个确定性ODE系统的闭包,该闭包近似于随机模型的均值和方差的演变。我们用数值模拟证明了闭包的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling information flow in a computer processor with a multi-stage queuing model
In this paper, we introduce a nonlinear stochastic model to describe the propagation of information inside a computer processor. In this model, a computational task is divided into stages, and information can flow from one stage to another. The model is formulated as a spatially-extended, continuous-time Markov chain where space represents different stages. This model is equivalent to a spatially-extended version of the M/M/s queue. The main modeling feature is the throttling function which describes the processor slowdown when the amount of information falls below a certain threshold. We derive the stationary distribution for this stochastic model and develop a closure for a deterministic ODE system that approximates the evolution of the mean and variance of the stochastic model. We demonstrate the validity of the closure with numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信