戴森环形系综的功率谱

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Peter J. Forrester , Nicholas S. Witte
{"title":"戴森环形系综的功率谱","authors":"Peter J. Forrester ,&nbsp;Nicholas S. Witte","doi":"10.1016/j.physd.2024.134435","DOIUrl":null,"url":null,"abstract":"<div><div>The power spectrum is a Fourier series statistic associated with the covariances of the displacement from average positions of the members of an eigen-sequence. When this eigen-sequence has rotational invariance, as for the eigen-angles of Dyson’s circular ensembles, recent work of Riser and Kanzieper has uncovered an exact identity expressing the power spectrum in terms of the generating function for the conditioned gap probability of having <span><math><mrow><mi>k</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>N</mi></mrow></math></span> eigenvalues in an interval. These authors moreover showed how for the circular unitary ensemble integrability properties of the generating function, via a particular Painlevé VI system, imply a computational scheme for the corresponding power spectrum, and allow for the determination of its large <span><math><mi>N</mi></math></span> limit. In the present work, these results are extended to the case of the circular orthogonal ensemble and circular symplectic ensemble, where the integrability is expressed through four particular Painlevé VI systems for finite <span><math><mi>N</mi></math></span>, and two Painlevé III<span><math><msup><mrow></mrow><mrow><mo>′</mo></mrow></msup></math></span> systems for the limit <span><math><mrow><mi>N</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, and also via corresponding Fredholm determinants. The relation between the limiting power spectrum <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>∞</mi></mrow></msub><mrow><mo>(</mo><mi>ω</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>ω</mi></math></span> denotes the Fourier variable, and the limiting generating function for the conditioned gap probabilities is particularly direct, involving just a single integration over the gap endpoint in the latter. Interpreting this generating function as the characteristic function of a counting statistic allows for it to be shown that <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>∞</mi></mrow></msub><mrow><mo>(</mo><mi>ω</mi><mo>)</mo></mrow><munder><mrow><mo>∼</mo></mrow><mrow><mi>ω</mi><mo>→</mo><mn>0</mn></mrow></munder><mfrac><mrow><mn>1</mn></mrow><mrow><mi>π</mi><mi>β</mi><mrow><mo>|</mo><mi>ω</mi><mo>|</mo></mrow></mrow></mfrac></mrow></math></span>, where <span><math><mi>β</mi></math></span> is the Dyson index.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"471 ","pages":"Article 134435"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power spectra of Dyson’s circular ensembles\",\"authors\":\"Peter J. Forrester ,&nbsp;Nicholas S. Witte\",\"doi\":\"10.1016/j.physd.2024.134435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The power spectrum is a Fourier series statistic associated with the covariances of the displacement from average positions of the members of an eigen-sequence. When this eigen-sequence has rotational invariance, as for the eigen-angles of Dyson’s circular ensembles, recent work of Riser and Kanzieper has uncovered an exact identity expressing the power spectrum in terms of the generating function for the conditioned gap probability of having <span><math><mrow><mi>k</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>N</mi></mrow></math></span> eigenvalues in an interval. These authors moreover showed how for the circular unitary ensemble integrability properties of the generating function, via a particular Painlevé VI system, imply a computational scheme for the corresponding power spectrum, and allow for the determination of its large <span><math><mi>N</mi></math></span> limit. In the present work, these results are extended to the case of the circular orthogonal ensemble and circular symplectic ensemble, where the integrability is expressed through four particular Painlevé VI systems for finite <span><math><mi>N</mi></math></span>, and two Painlevé III<span><math><msup><mrow></mrow><mrow><mo>′</mo></mrow></msup></math></span> systems for the limit <span><math><mrow><mi>N</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, and also via corresponding Fredholm determinants. The relation between the limiting power spectrum <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>∞</mi></mrow></msub><mrow><mo>(</mo><mi>ω</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>ω</mi></math></span> denotes the Fourier variable, and the limiting generating function for the conditioned gap probabilities is particularly direct, involving just a single integration over the gap endpoint in the latter. Interpreting this generating function as the characteristic function of a counting statistic allows for it to be shown that <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>∞</mi></mrow></msub><mrow><mo>(</mo><mi>ω</mi><mo>)</mo></mrow><munder><mrow><mo>∼</mo></mrow><mrow><mi>ω</mi><mo>→</mo><mn>0</mn></mrow></munder><mfrac><mrow><mn>1</mn></mrow><mrow><mi>π</mi><mi>β</mi><mrow><mo>|</mo><mi>ω</mi><mo>|</mo></mrow></mrow></mfrac></mrow></math></span>, where <span><math><mi>β</mi></math></span> is the Dyson index.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"471 \",\"pages\":\"Article 134435\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924003853\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003853","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

功率谱是傅里叶级数统计量,与特征序列成员的平均位置的位移的协方差有关。当该特征序列具有旋转不变时,对于Dyson圆形系的特征角,Riser和Kanzieper最近的工作揭示了一个精确的恒等式,该恒等式表示功率谱,该恒等式表示在一个区间内具有k=0,…,N个特征值的条件间隙概率的生成函数。此外,作者还通过一个特殊的painlevlevev系统,说明了生成函数的圆酉系综可积性如何暗示了相应功率谱的计算方案,并允许确定其大N极限。在本工作中,将这些结果推广到圆正交系和圆交系的情况,其中可积性通过有限N的四个特定painlev VI系统和极限N→∞的两个painlev III系统以及相应的Fredholm行列式来表示。极限功率谱S∞(ω)(其中ω表示傅里叶变量)与条件间隙概率的极限生成函数之间的关系特别直接,仅涉及后者在间隙端点上的单个积分。将该生成函数解释为计数统计量的特征函数,可以证明S∞(ω) ~ ω→01πβ|ω|,其中β为戴森指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power spectra of Dyson’s circular ensembles
The power spectrum is a Fourier series statistic associated with the covariances of the displacement from average positions of the members of an eigen-sequence. When this eigen-sequence has rotational invariance, as for the eigen-angles of Dyson’s circular ensembles, recent work of Riser and Kanzieper has uncovered an exact identity expressing the power spectrum in terms of the generating function for the conditioned gap probability of having k=0,,N eigenvalues in an interval. These authors moreover showed how for the circular unitary ensemble integrability properties of the generating function, via a particular Painlevé VI system, imply a computational scheme for the corresponding power spectrum, and allow for the determination of its large N limit. In the present work, these results are extended to the case of the circular orthogonal ensemble and circular symplectic ensemble, where the integrability is expressed through four particular Painlevé VI systems for finite N, and two Painlevé III systems for the limit N, and also via corresponding Fredholm determinants. The relation between the limiting power spectrum S(ω), where ω denotes the Fourier variable, and the limiting generating function for the conditioned gap probabilities is particularly direct, involving just a single integration over the gap endpoint in the latter. Interpreting this generating function as the characteristic function of a counting statistic allows for it to be shown that S(ω)ω01πβ|ω|, where β is the Dyson index.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信