具有奇异灵敏度和非线性化学刺激消耗率的吸引趋化模型边界峰层解的存在性和稳定性

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Zefu Feng , Kun Zhao , Shouming Zhou
{"title":"具有奇异灵敏度和非线性化学刺激消耗率的吸引趋化模型边界峰层解的存在性和稳定性","authors":"Zefu Feng ,&nbsp;Kun Zhao ,&nbsp;Shouming Zhou","doi":"10.1016/j.physd.2024.134429","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is devoted to the study of the existence and stability of non-trivial steady state solutions to the following coupled system of PDEs on the half-line <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>: <span><span><span><span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>−</mo><mi>χ</mi><msub><mrow><mrow><mo>[</mo><mi>u</mi><msub><mrow><mrow><mo>(</mo><mo>ln</mo><mi>w</mi><mo>)</mo></mrow></mrow><mrow><mi>x</mi></mrow></msub><mo>]</mo></mrow></mrow><mrow><mi>x</mi></mrow></msub><mo>,</mo></mrow></math></span></span><span><span><math><mrow><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>ɛ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msup><msup><mrow><mi>w</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo></mrow></math></span></span></span></span> which is a model of chemotaxis of Keller–Segel type. When <span><math><mi>u</mi></math></span> is subject to the no-flux boundary condition, <span><math><mi>w</mi></math></span> equals a positive value at the origin, and assuming the functions vanish at the far field, a unique steady state <span><math><mrow><mo>(</mo><mi>U</mi><mo>,</mo><mi>W</mi><mo>)</mo></mrow></math></span> is constructed under suitable restrictions on the system parameters, which is capable of describing fundamental phenomena in chemotaxis, such as spatial aggregation. Moreover, the steady state is shown to be nonlinearly asymptotically stable if <span><math><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>U</mi><mo>)</mo></mrow></math></span> carries zero mass, <span><math><mrow><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> matches <span><math><mrow><mi>W</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> at the far field, and the initial perturbation is sufficiently small in weighted Sobolev spaces.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"471 ","pages":"Article 134429"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and stability of boundary spike layer solutions of an attractive chemotaxis model with singular sensitivity and nonlinear consumption rate of chemical stimuli\",\"authors\":\"Zefu Feng ,&nbsp;Kun Zhao ,&nbsp;Shouming Zhou\",\"doi\":\"10.1016/j.physd.2024.134429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is devoted to the study of the existence and stability of non-trivial steady state solutions to the following coupled system of PDEs on the half-line <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>: <span><span><span><span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>−</mo><mi>χ</mi><msub><mrow><mrow><mo>[</mo><mi>u</mi><msub><mrow><mrow><mo>(</mo><mo>ln</mo><mi>w</mi><mo>)</mo></mrow></mrow><mrow><mi>x</mi></mrow></msub><mo>]</mo></mrow></mrow><mrow><mi>x</mi></mrow></msub><mo>,</mo></mrow></math></span></span><span><span><math><mrow><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>ɛ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msup><msup><mrow><mi>w</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo></mrow></math></span></span></span></span> which is a model of chemotaxis of Keller–Segel type. When <span><math><mi>u</mi></math></span> is subject to the no-flux boundary condition, <span><math><mi>w</mi></math></span> equals a positive value at the origin, and assuming the functions vanish at the far field, a unique steady state <span><math><mrow><mo>(</mo><mi>U</mi><mo>,</mo><mi>W</mi><mo>)</mo></mrow></math></span> is constructed under suitable restrictions on the system parameters, which is capable of describing fundamental phenomena in chemotaxis, such as spatial aggregation. Moreover, the steady state is shown to be nonlinearly asymptotically stable if <span><math><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>U</mi><mo>)</mo></mrow></math></span> carries zero mass, <span><math><mrow><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> matches <span><math><mrow><mi>W</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> at the far field, and the initial perturbation is sufficiently small in weighted Sobolev spaces.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"471 \",\"pages\":\"Article 134429\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924003798\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003798","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了半直线R+=(0,∞)上:ut=uxx−χ[u(lnw)x]x,wt= _ wxx−uγwm耦合系统非平凡稳态解的存在性和稳定性,该系统是一类趋化性的Keller-Segel型模型。当u满足无通量边界条件时,w在原点处为正值,假设函数在远场处消失,在适当的系统参数限制下,构造一个唯一的稳态(u, w),能够描述空间聚集等趋化性的基本现象。此外,如果(u0−U)携带零质量,w0(x)在远场匹配W(x),并且在加权Sobolev空间中初始扰动足够小,则稳态显示为非线性渐近稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and stability of boundary spike layer solutions of an attractive chemotaxis model with singular sensitivity and nonlinear consumption rate of chemical stimuli
This paper is devoted to the study of the existence and stability of non-trivial steady state solutions to the following coupled system of PDEs on the half-line R+=(0,): ut=uxxχ[u(lnw)x]x,wt=ɛwxxuγwm, which is a model of chemotaxis of Keller–Segel type. When u is subject to the no-flux boundary condition, w equals a positive value at the origin, and assuming the functions vanish at the far field, a unique steady state (U,W) is constructed under suitable restrictions on the system parameters, which is capable of describing fundamental phenomena in chemotaxis, such as spatial aggregation. Moreover, the steady state is shown to be nonlinearly asymptotically stable if (u0U) carries zero mass, w0(x) matches W(x) at the far field, and the initial perturbation is sufficiently small in weighted Sobolev spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信