超高速碰撞下航天器防护结构损伤估计方法

IF 3.1 2区 物理与天体物理 Q1 ENGINEERING, AEROSPACE
Duo Zhang , Gongshun Guan , Shengjie Xu , Yu Yang , Chunyang Li , Jianing Zhang
{"title":"超高速碰撞下航天器防护结构损伤估计方法","authors":"Duo Zhang ,&nbsp;Gongshun Guan ,&nbsp;Shengjie Xu ,&nbsp;Yu Yang ,&nbsp;Chunyang Li ,&nbsp;Jianing Zhang","doi":"10.1016/j.actaastro.2024.11.051","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an estimation method for assessing the damage to the rear wall of spacecraft protective structures caused by hypervelocity impacts of space debris. Utilizing the smoothed particle hydrodynamics for numerical simulation, a kernel-function based kinetic energy mapping method is employed to analyze the kinetic energy distribution of the debris cloud generated by the initial impact upon the rear wall. This study establishes a correlation between the kinetic energy of the debris cloud and the resulting damage to the rear wall. This correlation allows for the estimation of damage characteristics, including the depth and volume of impact craters on the rear wall following exposure to a debris cloud. Taking the hypervelocity impacts of an Al-2017 projectile on an Al-6061 thin plate as examples, experimental validation has demonstrated the effectiveness, robustness and versatility of this method over a range of particle sizes and grid resolutions. This method enables rapid estimation of damage to protective structures and assessment of their residual protective performance.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"227 ","pages":"Pages 96-113"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damage estimation method for spacecraft protective structures exposed to hypervelocity impacts\",\"authors\":\"Duo Zhang ,&nbsp;Gongshun Guan ,&nbsp;Shengjie Xu ,&nbsp;Yu Yang ,&nbsp;Chunyang Li ,&nbsp;Jianing Zhang\",\"doi\":\"10.1016/j.actaastro.2024.11.051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents an estimation method for assessing the damage to the rear wall of spacecraft protective structures caused by hypervelocity impacts of space debris. Utilizing the smoothed particle hydrodynamics for numerical simulation, a kernel-function based kinetic energy mapping method is employed to analyze the kinetic energy distribution of the debris cloud generated by the initial impact upon the rear wall. This study establishes a correlation between the kinetic energy of the debris cloud and the resulting damage to the rear wall. This correlation allows for the estimation of damage characteristics, including the depth and volume of impact craters on the rear wall following exposure to a debris cloud. Taking the hypervelocity impacts of an Al-2017 projectile on an Al-6061 thin plate as examples, experimental validation has demonstrated the effectiveness, robustness and versatility of this method over a range of particle sizes and grid resolutions. This method enables rapid estimation of damage to protective structures and assessment of their residual protective performance.</div></div>\",\"PeriodicalId\":44971,\"journal\":{\"name\":\"Acta Astronautica\",\"volume\":\"227 \",\"pages\":\"Pages 96-113\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Astronautica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094576524007112\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576524007112","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

提出了空间碎片超高速撞击对航天器防护结构后壁损伤的估计方法。利用光滑粒子流体力学进行数值模拟,采用基于核函数的动能映射方法,分析了初始撞击后壁面产生的碎片云的动能分布。本研究建立了碎片云的动能与对后壁造成的损伤之间的相关性。这种相关性可以用来估计损伤特征,包括暴露于碎片云后后壁上的撞击坑的深度和体积。以Al-2017弹丸对Al-6061薄板的超高速撞击为例,实验验证了该方法在不同粒径和网格分辨率下的有效性、鲁棒性和通用性。该方法能够快速估计防护结构的损伤并评估其剩余防护性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Damage estimation method for spacecraft protective structures exposed to hypervelocity impacts
This paper presents an estimation method for assessing the damage to the rear wall of spacecraft protective structures caused by hypervelocity impacts of space debris. Utilizing the smoothed particle hydrodynamics for numerical simulation, a kernel-function based kinetic energy mapping method is employed to analyze the kinetic energy distribution of the debris cloud generated by the initial impact upon the rear wall. This study establishes a correlation between the kinetic energy of the debris cloud and the resulting damage to the rear wall. This correlation allows for the estimation of damage characteristics, including the depth and volume of impact craters on the rear wall following exposure to a debris cloud. Taking the hypervelocity impacts of an Al-2017 projectile on an Al-6061 thin plate as examples, experimental validation has demonstrated the effectiveness, robustness and versatility of this method over a range of particle sizes and grid resolutions. This method enables rapid estimation of damage to protective structures and assessment of their residual protective performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Astronautica
Acta Astronautica 工程技术-工程:宇航
CiteScore
7.20
自引率
22.90%
发文量
599
审稿时长
53 days
期刊介绍: Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to: The peaceful scientific exploration of space, Its exploitation for human welfare and progress, Conception, design, development and operation of space-borne and Earth-based systems, In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信