Yifeng Ma , Yizhai Zhang , Ya Liu , Panfeng Huang , Fan Zhang
{"title":"基于合作博弈论的系留空间网络机器人主动能量管理分布式编队控制","authors":"Yifeng Ma , Yizhai Zhang , Ya Liu , Panfeng Huang , Fan Zhang","doi":"10.1016/j.actaastro.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>The current studies for Tethered Space Net Robot (TSNR) typically treat the tension force induced by the net as a disturbance and employ passive suppression for compensation. However, these approaches not only result in excess fuel consumption but also overlook the intrinsic nature of the net dynamics. When one Maneuverable Unit (MU) maneuvers, it generates a tension force on the net that is transmitted to other MUs. This force not only affects the control accuracy of other MUs but also has a positive effect. In this paper, an Active Energy Management Distributed Formation Control (AEMC) strategy is proposed to reveal this kind of interaction and maximize its advantage. Firstly, an energy recovery framework is established, allowing each MU can effectively utilize the tension force due to the net. Specifically, a neural network estimator is designed to capture the hysteresis relationship in which MUs influence each other by transmitting forces through the net. Furthermore, to achieve the cooperative completion of tasks, a game based control scheme is proposed to optimize the control input and tension force collectively. Through prediction and optimization, MUs actively manage their impacts on each other, thereby controlling the influence of tension force on the tracking errors of others. Finally, numerical simulations are conducted to showcase the effectiveness of the proposed approach.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"227 ","pages":"Pages 57-66"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An active energy management distributed formation control for tethered space net robot via cooperative game theory\",\"authors\":\"Yifeng Ma , Yizhai Zhang , Ya Liu , Panfeng Huang , Fan Zhang\",\"doi\":\"10.1016/j.actaastro.2024.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The current studies for Tethered Space Net Robot (TSNR) typically treat the tension force induced by the net as a disturbance and employ passive suppression for compensation. However, these approaches not only result in excess fuel consumption but also overlook the intrinsic nature of the net dynamics. When one Maneuverable Unit (MU) maneuvers, it generates a tension force on the net that is transmitted to other MUs. This force not only affects the control accuracy of other MUs but also has a positive effect. In this paper, an Active Energy Management Distributed Formation Control (AEMC) strategy is proposed to reveal this kind of interaction and maximize its advantage. Firstly, an energy recovery framework is established, allowing each MU can effectively utilize the tension force due to the net. Specifically, a neural network estimator is designed to capture the hysteresis relationship in which MUs influence each other by transmitting forces through the net. Furthermore, to achieve the cooperative completion of tasks, a game based control scheme is proposed to optimize the control input and tension force collectively. Through prediction and optimization, MUs actively manage their impacts on each other, thereby controlling the influence of tension force on the tracking errors of others. Finally, numerical simulations are conducted to showcase the effectiveness of the proposed approach.</div></div>\",\"PeriodicalId\":44971,\"journal\":{\"name\":\"Acta Astronautica\",\"volume\":\"227 \",\"pages\":\"Pages 57-66\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Astronautica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094576524006519\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576524006519","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
An active energy management distributed formation control for tethered space net robot via cooperative game theory
The current studies for Tethered Space Net Robot (TSNR) typically treat the tension force induced by the net as a disturbance and employ passive suppression for compensation. However, these approaches not only result in excess fuel consumption but also overlook the intrinsic nature of the net dynamics. When one Maneuverable Unit (MU) maneuvers, it generates a tension force on the net that is transmitted to other MUs. This force not only affects the control accuracy of other MUs but also has a positive effect. In this paper, an Active Energy Management Distributed Formation Control (AEMC) strategy is proposed to reveal this kind of interaction and maximize its advantage. Firstly, an energy recovery framework is established, allowing each MU can effectively utilize the tension force due to the net. Specifically, a neural network estimator is designed to capture the hysteresis relationship in which MUs influence each other by transmitting forces through the net. Furthermore, to achieve the cooperative completion of tasks, a game based control scheme is proposed to optimize the control input and tension force collectively. Through prediction and optimization, MUs actively manage their impacts on each other, thereby controlling the influence of tension force on the tracking errors of others. Finally, numerical simulations are conducted to showcase the effectiveness of the proposed approach.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.