Jaeseok Jang, Dahyun Kim, Dongkwon Jin, Chang-Su Kim
{"title":"基于轮廓的自动驾驶目标预测","authors":"Jaeseok Jang, Dahyun Kim, Dongkwon Jin, Chang-Su Kim","doi":"10.1016/j.jvcir.2024.104343","DOIUrl":null,"url":null,"abstract":"<div><div>A novel algorithm, called contour-based object forecasting (COF), to simultaneously perform contour-based segmentation and depth estimation of objects in future frames in autonomous driving systems is proposed in this paper. The proposed algorithm consists of encoding, future forecasting, decoding, and 3D rendering stages. First, we extract the features of observed frames, including past and current frames. Second, from these causal features, we predict the features of future frames using the future forecast module. Third, we decode the predicted features into contour and depth estimates. We obtain object depth maps aligned with segmentation masks via the depth completion using the predicted contours. Finally, from the prediction results, we render the forecasted objects in a 3D space. Experimental results demonstrate that the proposed algorithm reliably forecasts the contours and depths of objects in future frames and that the 3D rendering results intuitively visualize the future locations of the objects.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"106 ","pages":"Article 104343"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contour-based object forecasting for autonomous driving\",\"authors\":\"Jaeseok Jang, Dahyun Kim, Dongkwon Jin, Chang-Su Kim\",\"doi\":\"10.1016/j.jvcir.2024.104343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel algorithm, called contour-based object forecasting (COF), to simultaneously perform contour-based segmentation and depth estimation of objects in future frames in autonomous driving systems is proposed in this paper. The proposed algorithm consists of encoding, future forecasting, decoding, and 3D rendering stages. First, we extract the features of observed frames, including past and current frames. Second, from these causal features, we predict the features of future frames using the future forecast module. Third, we decode the predicted features into contour and depth estimates. We obtain object depth maps aligned with segmentation masks via the depth completion using the predicted contours. Finally, from the prediction results, we render the forecasted objects in a 3D space. Experimental results demonstrate that the proposed algorithm reliably forecasts the contours and depths of objects in future frames and that the 3D rendering results intuitively visualize the future locations of the objects.</div></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"106 \",\"pages\":\"Article 104343\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320324002992\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002992","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Contour-based object forecasting for autonomous driving
A novel algorithm, called contour-based object forecasting (COF), to simultaneously perform contour-based segmentation and depth estimation of objects in future frames in autonomous driving systems is proposed in this paper. The proposed algorithm consists of encoding, future forecasting, decoding, and 3D rendering stages. First, we extract the features of observed frames, including past and current frames. Second, from these causal features, we predict the features of future frames using the future forecast module. Third, we decode the predicted features into contour and depth estimates. We obtain object depth maps aligned with segmentation masks via the depth completion using the predicted contours. Finally, from the prediction results, we render the forecasted objects in a 3D space. Experimental results demonstrate that the proposed algorithm reliably forecasts the contours and depths of objects in future frames and that the 3D rendering results intuitively visualize the future locations of the objects.
期刊介绍:
The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.