{"title":"10分钟森林野火早期探测:通过递归变压器融合多类型多源信息","authors":"Qiang Zhang , Jian Zhu , Yushuai Dong , Enyu Zhao , Meiping Song , Qiangqiang Yuan","doi":"10.1016/j.neucom.2024.128963","DOIUrl":null,"url":null,"abstract":"<div><div>Forest wildfire has great impacts on both nature and human society. While disrupts the ecosystems, wildfire leads to significant economic loss and poses a threat to local communities. To detect forest wildfire, remote sensing technology has become an essential and powerful tool. Compared with polar-orbiting satellite, the new generation of geostationary satellite provides higher temporal resolution and faster response capability. In this study, we utilize the near real-time data of Himawari-8/9 satellite, to achieve 10-min forest early wildfire detection. A recursive transformer model is proposed in this work. It fuses multi-type and multi-source information for Himawari-8/9 satellite. By leveraging the spectral, temporal and spatial features of fire pixels and considering land cover information, the proposed method reduces interference factors like cloud and terrain, resulting in minute-level and near real-time detection of forest wildfire. In 21 ground truth forest wildfire scenarios and MODIS-based cross-validation dataset, the proposed method achieves better results compared to the JAXA wildfire product, in terms of overall fire detection accuracy, early fire detection rate, omission rate, and real-time performance. Furthermore, the proposed framework effectively lowers the emergency response time for early forest wildfire detection, thereby reducing the loss caused by forest wildfire.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"616 ","pages":"Article 128963"},"PeriodicalIF":6.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"10-minute forest early wildfire detection: Fusing multi-type and multi-source information via recursive transformer\",\"authors\":\"Qiang Zhang , Jian Zhu , Yushuai Dong , Enyu Zhao , Meiping Song , Qiangqiang Yuan\",\"doi\":\"10.1016/j.neucom.2024.128963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Forest wildfire has great impacts on both nature and human society. While disrupts the ecosystems, wildfire leads to significant economic loss and poses a threat to local communities. To detect forest wildfire, remote sensing technology has become an essential and powerful tool. Compared with polar-orbiting satellite, the new generation of geostationary satellite provides higher temporal resolution and faster response capability. In this study, we utilize the near real-time data of Himawari-8/9 satellite, to achieve 10-min forest early wildfire detection. A recursive transformer model is proposed in this work. It fuses multi-type and multi-source information for Himawari-8/9 satellite. By leveraging the spectral, temporal and spatial features of fire pixels and considering land cover information, the proposed method reduces interference factors like cloud and terrain, resulting in minute-level and near real-time detection of forest wildfire. In 21 ground truth forest wildfire scenarios and MODIS-based cross-validation dataset, the proposed method achieves better results compared to the JAXA wildfire product, in terms of overall fire detection accuracy, early fire detection rate, omission rate, and real-time performance. Furthermore, the proposed framework effectively lowers the emergency response time for early forest wildfire detection, thereby reducing the loss caused by forest wildfire.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"616 \",\"pages\":\"Article 128963\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092523122401734X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092523122401734X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
10-minute forest early wildfire detection: Fusing multi-type and multi-source information via recursive transformer
Forest wildfire has great impacts on both nature and human society. While disrupts the ecosystems, wildfire leads to significant economic loss and poses a threat to local communities. To detect forest wildfire, remote sensing technology has become an essential and powerful tool. Compared with polar-orbiting satellite, the new generation of geostationary satellite provides higher temporal resolution and faster response capability. In this study, we utilize the near real-time data of Himawari-8/9 satellite, to achieve 10-min forest early wildfire detection. A recursive transformer model is proposed in this work. It fuses multi-type and multi-source information for Himawari-8/9 satellite. By leveraging the spectral, temporal and spatial features of fire pixels and considering land cover information, the proposed method reduces interference factors like cloud and terrain, resulting in minute-level and near real-time detection of forest wildfire. In 21 ground truth forest wildfire scenarios and MODIS-based cross-validation dataset, the proposed method achieves better results compared to the JAXA wildfire product, in terms of overall fire detection accuracy, early fire detection rate, omission rate, and real-time performance. Furthermore, the proposed framework effectively lowers the emergency response time for early forest wildfire detection, thereby reducing the loss caused by forest wildfire.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.