Yu Fan , Shuoguo Zhang , Xiaoliang Li , Yujie Zhu , Xiangyu Hu , Nikolaus A. Adams
{"title":"不溶性表面活性剂动力学的混合方法","authors":"Yu Fan , Shuoguo Zhang , Xiaoliang Li , Yujie Zhu , Xiangyu Hu , Nikolaus A. Adams","doi":"10.1016/j.jcp.2024.113602","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we develop a hybrid method for insoluble surfactant dynamics. While the Navier-Stokes equations are solved by an Eulerian method with level set describing the interfaces, the surfactant transport is tracked by a single-layer Lagrangian particle method. Consequently, this hybrid method inherits the ability in handling topology changes from the level-set method and high computational efficiency from the Eulerian method. On the other hand, the Lagrangian particle method ensures mass conservation and does not require topology information (connectivity). To prevent clustering of Lagrangian particles, a novel remeshing approach is proposed. It not only enables the generation of particle distributions adaptive to interface geometries, especially for extremely large deformation and strong stretching, but also provides an accurate reconstruction of concentration fields on the interface with mass conservation. Furthermore, by proposing an adaptive remeshing control, we optimize the remeshing frequency to balance computational costs and accuracy. Conservation, accuracy, and convergence of the present hybrid method are validated with 2-D and 3-D test cases.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"522 ","pages":"Article 113602"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid method for insoluble surfactant dynamics\",\"authors\":\"Yu Fan , Shuoguo Zhang , Xiaoliang Li , Yujie Zhu , Xiangyu Hu , Nikolaus A. Adams\",\"doi\":\"10.1016/j.jcp.2024.113602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we develop a hybrid method for insoluble surfactant dynamics. While the Navier-Stokes equations are solved by an Eulerian method with level set describing the interfaces, the surfactant transport is tracked by a single-layer Lagrangian particle method. Consequently, this hybrid method inherits the ability in handling topology changes from the level-set method and high computational efficiency from the Eulerian method. On the other hand, the Lagrangian particle method ensures mass conservation and does not require topology information (connectivity). To prevent clustering of Lagrangian particles, a novel remeshing approach is proposed. It not only enables the generation of particle distributions adaptive to interface geometries, especially for extremely large deformation and strong stretching, but also provides an accurate reconstruction of concentration fields on the interface with mass conservation. Furthermore, by proposing an adaptive remeshing control, we optimize the remeshing frequency to balance computational costs and accuracy. Conservation, accuracy, and convergence of the present hybrid method are validated with 2-D and 3-D test cases.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"522 \",\"pages\":\"Article 113602\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124008507\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124008507","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
In this paper, we develop a hybrid method for insoluble surfactant dynamics. While the Navier-Stokes equations are solved by an Eulerian method with level set describing the interfaces, the surfactant transport is tracked by a single-layer Lagrangian particle method. Consequently, this hybrid method inherits the ability in handling topology changes from the level-set method and high computational efficiency from the Eulerian method. On the other hand, the Lagrangian particle method ensures mass conservation and does not require topology information (connectivity). To prevent clustering of Lagrangian particles, a novel remeshing approach is proposed. It not only enables the generation of particle distributions adaptive to interface geometries, especially for extremely large deformation and strong stretching, but also provides an accurate reconstruction of concentration fields on the interface with mass conservation. Furthermore, by proposing an adaptive remeshing control, we optimize the remeshing frequency to balance computational costs and accuracy. Conservation, accuracy, and convergence of the present hybrid method are validated with 2-D and 3-D test cases.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.