双曲守恒律下基于误差时间步进的自适应曲线网格Lax-Wendroff通量重建

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Arpit Babbar, Praveen Chandrashekar
{"title":"双曲守恒律下基于误差时间步进的自适应曲线网格Lax-Wendroff通量重建","authors":"Arpit Babbar,&nbsp;Praveen Chandrashekar","doi":"10.1016/j.jcp.2024.113622","DOIUrl":null,"url":null,"abstract":"<div><div>Lax-Wendroff Flux Reconstruction (LWFR) is a single-stage, high order, quadrature free method for solving hyperbolic conservation laws. This work extends the LWFR scheme to solve conservation laws on curvilinear meshes with adaptive mesh refinement (AMR). The scheme uses a subcell based blending limiter to perform shock capturing and exploits the same subcell structure to obtain admissibility preservation on curvilinear meshes. It is proven that the proposed extension of LWFR scheme to curvilinear grids preserves constant solution (free stream preservation) under the standard metric identities. For curvilinear meshes, linear Fourier stability analysis cannot be used to obtain an optimal CFL number. Thus, an embedded-error based time step computation method is proposed for LWFR method which reduces fine-tuning process required to select a stable CFL number using the wave speed based time step computation. The developments are tested on compressible Euler's equations, validating the blending limiter, admissibility preservation, AMR algorithm, curvilinear meshes and error based time stepping.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"522 ","pages":"Article 113622"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lax-Wendroff flux reconstruction on adaptive curvilinear meshes with error based time stepping for hyperbolic conservation laws\",\"authors\":\"Arpit Babbar,&nbsp;Praveen Chandrashekar\",\"doi\":\"10.1016/j.jcp.2024.113622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lax-Wendroff Flux Reconstruction (LWFR) is a single-stage, high order, quadrature free method for solving hyperbolic conservation laws. This work extends the LWFR scheme to solve conservation laws on curvilinear meshes with adaptive mesh refinement (AMR). The scheme uses a subcell based blending limiter to perform shock capturing and exploits the same subcell structure to obtain admissibility preservation on curvilinear meshes. It is proven that the proposed extension of LWFR scheme to curvilinear grids preserves constant solution (free stream preservation) under the standard metric identities. For curvilinear meshes, linear Fourier stability analysis cannot be used to obtain an optimal CFL number. Thus, an embedded-error based time step computation method is proposed for LWFR method which reduces fine-tuning process required to select a stable CFL number using the wave speed based time step computation. The developments are tested on compressible Euler's equations, validating the blending limiter, admissibility preservation, AMR algorithm, curvilinear meshes and error based time stepping.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"522 \",\"pages\":\"Article 113622\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124008702\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124008702","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

Lax-Wendroff通量重建(LWFR)是求解双曲型守恒律的一种单阶段、高阶、无正交的方法。本文扩展了LWFR方案,利用自适应网格细化(AMR)求解曲线网格上的守恒律。该方案采用基于子单元的混合限制器进行冲击捕获,并利用相同的子单元结构在曲线网格上获得可容许性保持。证明了将LWFR格式推广到曲线网格,在标准度量恒等式下保持常解(自由流保持)。对于曲线网格,线性傅里叶稳定性分析不能得到最优CFL数。为此,提出了一种基于嵌入误差的时间步长计算方法,减少了采用基于波速的时间步长计算选择稳定CFL数所需的微调过程。在可压缩欧拉方程上进行了测试,验证了混合限制器、可容许性保留、AMR算法、曲线网格和基于误差的时间步进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lax-Wendroff flux reconstruction on adaptive curvilinear meshes with error based time stepping for hyperbolic conservation laws
Lax-Wendroff Flux Reconstruction (LWFR) is a single-stage, high order, quadrature free method for solving hyperbolic conservation laws. This work extends the LWFR scheme to solve conservation laws on curvilinear meshes with adaptive mesh refinement (AMR). The scheme uses a subcell based blending limiter to perform shock capturing and exploits the same subcell structure to obtain admissibility preservation on curvilinear meshes. It is proven that the proposed extension of LWFR scheme to curvilinear grids preserves constant solution (free stream preservation) under the standard metric identities. For curvilinear meshes, linear Fourier stability analysis cannot be used to obtain an optimal CFL number. Thus, an embedded-error based time step computation method is proposed for LWFR method which reduces fine-tuning process required to select a stable CFL number using the wave speed based time step computation. The developments are tested on compressible Euler's equations, validating the blending limiter, admissibility preservation, AMR algorithm, curvilinear meshes and error based time stepping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信