量子BGK方程的一种高效渐近保持IMEX方法

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ruo Li , Yixiao Lu , Yanli Wang
{"title":"量子BGK方程的一种高效渐近保持IMEX方法","authors":"Ruo Li ,&nbsp;Yixiao Lu ,&nbsp;Yanli Wang","doi":"10.1016/j.jcp.2024.113619","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an asymptotic preserving (AP) implicit-explicit (IMEX) scheme for solving the quantum BGK equation using the Hermite spectral method. The distribution function is expanded in a series of Hermite polynomials, with the Gaussian function serving as the weight function. The main challenge in this numerical scheme lies in efficiently expanding the quantum Maxwellian with the Hermite basis functions. To overcome this, we simplify the problem to the calculation of polylogarithms and propose an efficient algorithm to handle it, utilizing the Gauss-Hermite quadrature. Several numerical simulations, including a spatially 2D lid-driven cavity flow, demonstrate the AP property and remarkable efficiency of this method.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"522 ","pages":"Article 113619"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A highly efficient asymptotic preserving IMEX method for the quantum BGK equation\",\"authors\":\"Ruo Li ,&nbsp;Yixiao Lu ,&nbsp;Yanli Wang\",\"doi\":\"10.1016/j.jcp.2024.113619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents an asymptotic preserving (AP) implicit-explicit (IMEX) scheme for solving the quantum BGK equation using the Hermite spectral method. The distribution function is expanded in a series of Hermite polynomials, with the Gaussian function serving as the weight function. The main challenge in this numerical scheme lies in efficiently expanding the quantum Maxwellian with the Hermite basis functions. To overcome this, we simplify the problem to the calculation of polylogarithms and propose an efficient algorithm to handle it, utilizing the Gauss-Hermite quadrature. Several numerical simulations, including a spatially 2D lid-driven cavity flow, demonstrate the AP property and remarkable efficiency of this method.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"522 \",\"pages\":\"Article 113619\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124008672\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124008672","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用Hermite谱法求解量子BGK方程的渐近保持(AP)隐显(IMEX)格式。将分布函数展开为一系列厄米特多项式,高斯函数作为权函数。该数值格式的主要挑战在于用厄米特基函数有效地展开量子麦克斯韦方程组。为了克服这个问题,我们将问题简化为多对数的计算,并提出了一种有效的算法来处理它,利用高斯-埃尔米特正交。若干数值模拟,包括空间二维盖子驱动的空腔流动,证明了该方法的AP特性和显著的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A highly efficient asymptotic preserving IMEX method for the quantum BGK equation
This paper presents an asymptotic preserving (AP) implicit-explicit (IMEX) scheme for solving the quantum BGK equation using the Hermite spectral method. The distribution function is expanded in a series of Hermite polynomials, with the Gaussian function serving as the weight function. The main challenge in this numerical scheme lies in efficiently expanding the quantum Maxwellian with the Hermite basis functions. To overcome this, we simplify the problem to the calculation of polylogarithms and propose an efficient algorithm to handle it, utilizing the Gauss-Hermite quadrature. Several numerical simulations, including a spatially 2D lid-driven cavity flow, demonstrate the AP property and remarkable efficiency of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信