一个全面的框架,用于从C/ c++源代码项目中收集漏洞

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Guru Bhandari, Nikola Gavric, Andrii Shalaginov
{"title":"一个全面的框架,用于从C/ c++源代码项目中收集漏洞","authors":"Guru Bhandari,&nbsp;Nikola Gavric,&nbsp;Andrii Shalaginov","doi":"10.1016/j.simpa.2024.100713","DOIUrl":null,"url":null,"abstract":"<div><div>The study introduces <em>VulnMiner</em>, a comprehensive framework encompassing a data extraction tool tailored for identifying vulnerabilities in C/C++ source code. Moreover, it unveils an initial release of a vulnerability dataset, curated from prevalent projects and annotated with vulnerable and benign instances. This dataset incorporates projects with vulnerabilities labeled as Common Weakness Enumeration (CWE) categories. The developed open-source extraction tool collects vulnerability data utilizing static security analyzers. The study also fosters the machine learning (ML) and natural language processing (NLP) model’s effectiveness in accurately classifying vulnerabilities, evidenced by its identification of numerous weaknesses in open-source projects.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"22 ","pages":"Article 100713"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VulnMiner: A comprehensive framework for vulnerability collection from C/C++ source code projects\",\"authors\":\"Guru Bhandari,&nbsp;Nikola Gavric,&nbsp;Andrii Shalaginov\",\"doi\":\"10.1016/j.simpa.2024.100713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The study introduces <em>VulnMiner</em>, a comprehensive framework encompassing a data extraction tool tailored for identifying vulnerabilities in C/C++ source code. Moreover, it unveils an initial release of a vulnerability dataset, curated from prevalent projects and annotated with vulnerable and benign instances. This dataset incorporates projects with vulnerabilities labeled as Common Weakness Enumeration (CWE) categories. The developed open-source extraction tool collects vulnerability data utilizing static security analyzers. The study also fosters the machine learning (ML) and natural language processing (NLP) model’s effectiveness in accurately classifying vulnerabilities, evidenced by its identification of numerous weaknesses in open-source projects.</div></div>\",\"PeriodicalId\":29771,\"journal\":{\"name\":\"Software Impacts\",\"volume\":\"22 \",\"pages\":\"Article 100713\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665963824001015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824001015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

该研究介绍了VulnMiner,这是一个全面的框架,包含一个专门用于识别C/ c++源代码漏洞的数据提取工具。此外,它还公布了一个漏洞数据集的初始版本,该数据集从流行的项目中挑选出来,并注释了脆弱和良性的实例。此数据集包含带有标记为常见弱点枚举(CWE)类别的漏洞的项目。开发的开源提取工具利用静态安全分析器收集漏洞数据。该研究还促进了机器学习(ML)和自然语言处理(NLP)模型在准确分类漏洞方面的有效性,其对开源项目中众多弱点的识别证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VulnMiner: A comprehensive framework for vulnerability collection from C/C++ source code projects
The study introduces VulnMiner, a comprehensive framework encompassing a data extraction tool tailored for identifying vulnerabilities in C/C++ source code. Moreover, it unveils an initial release of a vulnerability dataset, curated from prevalent projects and annotated with vulnerable and benign instances. This dataset incorporates projects with vulnerabilities labeled as Common Weakness Enumeration (CWE) categories. The developed open-source extraction tool collects vulnerability data utilizing static security analyzers. The study also fosters the machine learning (ML) and natural language processing (NLP) model’s effectiveness in accurately classifying vulnerabilities, evidenced by its identification of numerous weaknesses in open-source projects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信