通过整合杂合变异和 Hi-C 数据,对 Nanopore 基因组组装进行分期。

Jun Zhang, Fan Nie, Feng Luo, Jianxin Wang
{"title":"通过整合杂合变异和 Hi-C 数据,对 Nanopore 基因组组装进行分期。","authors":"Jun Zhang, Fan Nie, Feng Luo, Jianxin Wang","doi":"10.1093/bioinformatics/btae712","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Haplotype-resolved genome assemblies serve as vital resources in various research domains, including genomics, medicine, and pangenomics. Algorithms employing Hi-C data to generate haplotype-resolved assemblies are particularly advantageous due to its ready availability. Existing methods primarily depend on mapping quality to filter out uninformative Hi-C alignments which may be susceptible to sequencing errors. Setting a high mapping quality threshold filters out numerous informative Hi-C alignments, whereas a low mapping quality threshold compromises the accuracy of Hi-C alignments. Maintaining high accuracy while retaining a maximum number of Hi-C alignments can be challenging.</p><p><strong>Results: </strong>In our experiments, heterozygous variations play an important role in filtering uninformative Hi-C alignments. Here, we introduce Diphase, a novel phasing tool that harnesses heterozygous variations to accurately identify the informative Hi-C alignments for phasing and to extend primary/alternate assemblies. Diphase leverages mapping quality and heterozygous variations to filter uninformative Hi-C alignments, thereby enhancing the accuracy of phasing and the detection of switches. To validate its performance, we conducted a comparative analysis of Diphase, FALCON-Phase, and GFAse on various human datasets. The results demonstrate that Diphase achieves a longer phased block N50 and exhibits higher phasing accuracy while maintaining a lower hamming error rate.</p><p><strong>Availability: </strong>The source code of Diphase is available at https://github.com/zhangjuncsu/Diphase.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phasing Nanopore genome assembly by integrating heterozygous variations and Hi-C data.\",\"authors\":\"Jun Zhang, Fan Nie, Feng Luo, Jianxin Wang\",\"doi\":\"10.1093/bioinformatics/btae712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Haplotype-resolved genome assemblies serve as vital resources in various research domains, including genomics, medicine, and pangenomics. Algorithms employing Hi-C data to generate haplotype-resolved assemblies are particularly advantageous due to its ready availability. Existing methods primarily depend on mapping quality to filter out uninformative Hi-C alignments which may be susceptible to sequencing errors. Setting a high mapping quality threshold filters out numerous informative Hi-C alignments, whereas a low mapping quality threshold compromises the accuracy of Hi-C alignments. Maintaining high accuracy while retaining a maximum number of Hi-C alignments can be challenging.</p><p><strong>Results: </strong>In our experiments, heterozygous variations play an important role in filtering uninformative Hi-C alignments. Here, we introduce Diphase, a novel phasing tool that harnesses heterozygous variations to accurately identify the informative Hi-C alignments for phasing and to extend primary/alternate assemblies. Diphase leverages mapping quality and heterozygous variations to filter uninformative Hi-C alignments, thereby enhancing the accuracy of phasing and the detection of switches. To validate its performance, we conducted a comparative analysis of Diphase, FALCON-Phase, and GFAse on various human datasets. The results demonstrate that Diphase achieves a longer phased block N50 and exhibits higher phasing accuracy while maintaining a lower hamming error rate.</p><p><strong>Availability: </strong>The source code of Diphase is available at https://github.com/zhangjuncsu/Diphase.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btae712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机单倍型解析基因组装配是基因组学、医学和泛基因组学等多个研究领域的重要资源。利用 Hi-C 数据生成单倍型解析装配的算法因其随时可用性而特别具有优势。现有的方法主要依赖于映射质量来过滤掉可能受测序错误影响的无信息 Hi-C 配对。设置较高的映射质量阈值会过滤掉大量有信息的 Hi-C 对齐,而较低的映射质量阈值则会影响 Hi-C 对齐的准确性。既要保持较高的准确性,又要保留最大数量的 Hi-C 对齐可能具有挑战性:在我们的实验中,杂合变异在过滤无信息的 Hi-C 对齐中发挥了重要作用。在此,我们介绍一种新颖的分期工具--Diphase,它能利用杂合变异准确识别信息量大的Hi-C排列,以进行分期,并扩展主/候选装配。Diphase 利用映射质量和杂合变异过滤无信息的 Hi-C 配列,从而提高了分期和开关检测的准确性。为了验证其性能,我们在各种人类数据集上对 Diphase、FALCON-Phase 和 GFAse 进行了比较分析。结果表明,Diphase 的相位块 N50 更长,相位精度更高,同时保持了较低的汉明误差率:Diphase 的源代码可从 https://github.com/zhangjuncsu/Diphase.Supplementary 信息中获取:补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phasing Nanopore genome assembly by integrating heterozygous variations and Hi-C data.

Motivation: Haplotype-resolved genome assemblies serve as vital resources in various research domains, including genomics, medicine, and pangenomics. Algorithms employing Hi-C data to generate haplotype-resolved assemblies are particularly advantageous due to its ready availability. Existing methods primarily depend on mapping quality to filter out uninformative Hi-C alignments which may be susceptible to sequencing errors. Setting a high mapping quality threshold filters out numerous informative Hi-C alignments, whereas a low mapping quality threshold compromises the accuracy of Hi-C alignments. Maintaining high accuracy while retaining a maximum number of Hi-C alignments can be challenging.

Results: In our experiments, heterozygous variations play an important role in filtering uninformative Hi-C alignments. Here, we introduce Diphase, a novel phasing tool that harnesses heterozygous variations to accurately identify the informative Hi-C alignments for phasing and to extend primary/alternate assemblies. Diphase leverages mapping quality and heterozygous variations to filter uninformative Hi-C alignments, thereby enhancing the accuracy of phasing and the detection of switches. To validate its performance, we conducted a comparative analysis of Diphase, FALCON-Phase, and GFAse on various human datasets. The results demonstrate that Diphase achieves a longer phased block N50 and exhibits higher phasing accuracy while maintaining a lower hamming error rate.

Availability: The source code of Diphase is available at https://github.com/zhangjuncsu/Diphase.

Supplementary information: Supplementary data are available at Bioinformatics online.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信