毫米磁电生物医学植入物的全向无线功率传输。

ArXiv Pub Date : 2024-11-19
Wei Wang, Zhanghao Yu, Yiwei Zou, Joshua E Woods, Prahalad Chari, Yumin Su, Jacob T Robinson, Kaiyuan Yang
{"title":"毫米磁电生物医学植入物的全向无线功率传输。","authors":"Wei Wang, Zhanghao Yu, Yiwei Zou, Joshua E Woods, Prahalad Chari, Yumin Su, Jacob T Robinson, Kaiyuan Yang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Miniature bioelectronic implants promise revolutionary therapies for cardiovascular and neurological disorders. Wireless power transfer (WPT) is a significant method for miniaturization, eliminating the need for bulky batteries in devices. Despite successful demonstrations of millimetric battery free implants in animal models, the robustness and efficiency of WPT are known to degrade significantly under misalignment incurred by body movements, respiration, heart beating, and limited control of implant orientation during surgery. This article presents an omnidirectional WPT platform for millimetric bioelectronic implants, employing the emerging magnetoelectric (ME) WPT modality, and magnetic field steering technique based on multiple transmitter (TX) coils. To accurately sense the weak coupling in a miniature implant and adaptively control the multicoil TX array in a closed loop, we develop an active echo (AE) scheme using a tiny coil on the implant. Our prototype comprises a fully integrated 14.2 mm3 implantable stimulator embedding a custom low power system on chip (SoC) powered by an ME film, a TX with a custom three channel AE RX chip, and a multicoil TX array with mutual inductance cancellation. The AE RX achieves negative 161 dBm per Hz input referred noise with 64 dB gain tuning range to reliably sense the AE signal, and offers fast polarity detection for driver control. AE simultaneously enhances the robustness, efficiency, and charging range of ME WPT. Under 90 degree rotation from the ideal position, our omnidirectional WPT system achieves 6.8x higher power transfer efficiency (PTE) than a single coil baseline. The tracking error of AE negligibly degrades the PTE by less than 2 percent from using ideal control.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601786/pdf/","citationCount":"0","resultStr":"{\"title\":\"Omnidirectional Wireless Power Transfer for Millimetric Magnetoelectric Biomedical Implants.\",\"authors\":\"Wei Wang, Zhanghao Yu, Yiwei Zou, Joshua E Woods, Prahalad Chari, Yumin Su, Jacob T Robinson, Kaiyuan Yang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Miniature bioelectronic implants promise revolutionary therapies for cardiovascular and neurological disorders. Wireless power transfer (WPT) is a significant method for miniaturization, eliminating the need for bulky batteries in devices. Despite successful demonstrations of millimetric battery free implants in animal models, the robustness and efficiency of WPT are known to degrade significantly under misalignment incurred by body movements, respiration, heart beating, and limited control of implant orientation during surgery. This article presents an omnidirectional WPT platform for millimetric bioelectronic implants, employing the emerging magnetoelectric (ME) WPT modality, and magnetic field steering technique based on multiple transmitter (TX) coils. To accurately sense the weak coupling in a miniature implant and adaptively control the multicoil TX array in a closed loop, we develop an active echo (AE) scheme using a tiny coil on the implant. Our prototype comprises a fully integrated 14.2 mm3 implantable stimulator embedding a custom low power system on chip (SoC) powered by an ME film, a TX with a custom three channel AE RX chip, and a multicoil TX array with mutual inductance cancellation. The AE RX achieves negative 161 dBm per Hz input referred noise with 64 dB gain tuning range to reliably sense the AE signal, and offers fast polarity detection for driver control. AE simultaneously enhances the robustness, efficiency, and charging range of ME WPT. Under 90 degree rotation from the ideal position, our omnidirectional WPT system achieves 6.8x higher power transfer efficiency (PTE) than a single coil baseline. The tracking error of AE negligibly degrades the PTE by less than 2 percent from using ideal control.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601786/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微型生物电子植入物有望为心血管和神经疾病带来革命性的治疗方法。无线电力传输(WPT)是实现微型化的重要方法,它消除了设备对笨重电池的需求。尽管在动物模型中成功展示了毫米级无电池植入物,但众所周知,在身体运动、呼吸、心脏跳动以及手术过程中对植入物方向的有限控制所造成的错位情况下,WPT 的稳健性和效率会显著下降。本文介绍了一种用于毫米级生物电子植入物的全向 WPT 平台,该平台采用了新兴的磁电 (ME) WPT 模式和基于多个发射器 (TX) 线圈的磁场转向技术。为了准确感知微型植入体中的弱耦合,并在闭环中自适应地控制多线圈 TX 阵列,我们开发了一种主动回声(AE)方案,使用植入体上的微型线圈。我们的原型包括一个完全集成的 14.2 mm3 植入式刺激器,内嵌一个由 ME 薄膜供电的定制低功耗片上系统 (SoC)、一个带有定制三通道 AE RX 芯片的 TX 和一个具有互感消除功能的多线圈 TX 阵列。AE RX 的输入参考噪声为负 161 dBm/Hz,增益调整范围为 64 dB,能够可靠地感应 AE 信号,并提供快速极性检测功能以实现驱动器控制。AE 同时增强了 ME WPT 的稳健性、效率和充电范围。在从理想位置旋转 90 度的情况下,我们的全向 WPT 系统的功率传输效率(PTE)是单线圈基线的 6.8 倍。与理想控制相比,AE 的跟踪误差可忽略不计,PTE 下降不到 2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Omnidirectional Wireless Power Transfer for Millimetric Magnetoelectric Biomedical Implants.

Miniature bioelectronic implants promise revolutionary therapies for cardiovascular and neurological disorders. Wireless power transfer (WPT) is a significant method for miniaturization, eliminating the need for bulky batteries in devices. Despite successful demonstrations of millimetric battery free implants in animal models, the robustness and efficiency of WPT are known to degrade significantly under misalignment incurred by body movements, respiration, heart beating, and limited control of implant orientation during surgery. This article presents an omnidirectional WPT platform for millimetric bioelectronic implants, employing the emerging magnetoelectric (ME) WPT modality, and magnetic field steering technique based on multiple transmitter (TX) coils. To accurately sense the weak coupling in a miniature implant and adaptively control the multicoil TX array in a closed loop, we develop an active echo (AE) scheme using a tiny coil on the implant. Our prototype comprises a fully integrated 14.2 mm3 implantable stimulator embedding a custom low power system on chip (SoC) powered by an ME film, a TX with a custom three channel AE RX chip, and a multicoil TX array with mutual inductance cancellation. The AE RX achieves negative 161 dBm per Hz input referred noise with 64 dB gain tuning range to reliably sense the AE signal, and offers fast polarity detection for driver control. AE simultaneously enhances the robustness, efficiency, and charging range of ME WPT. Under 90 degree rotation from the ideal position, our omnidirectional WPT system achieves 6.8x higher power transfer efficiency (PTE) than a single coil baseline. The tracking error of AE negligibly degrades the PTE by less than 2 percent from using ideal control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信