{"title":"从分子动力学模拟和基于深度学习的表面描述符预测单克隆抗体生物物理特性的机器学习模型。","authors":"I-En Wu, Lateefat Kalejaye, Pin-Kuang Lai","doi":"10.1021/acs.molpharmaceut.4c00804","DOIUrl":null,"url":null,"abstract":"<p><p>Monoclonal antibodies (mAbs) have found extensive applications and development in treating various diseases. From the pharmaceutical industry's perspective, the journey from the design and development of mAbs to clinical testing and large-scale production is a highly time-consuming and resource-intensive process. During the research and development phase, assessing and optimizing the developability of mAbs is of paramount importance to ensure their success as candidates for therapeutic drugs. The critical factors influencing mAb development are their biophysical properties, such as aggregation propensity, solubility, and viscosity. This study utilized a data set comprising 12 biophysical properties of 137 antibodies from a previous study (Proc Natl Acad Sci USA. 114(5):944-949, 2017). We employed full-length antibody molecular dynamics simulations and machine learning techniques to predict experimental data for these 12 biophysical properties. Additionally, we utilized a newly developed deep learning model called DeepSP, which directly predicts the dynamical and structural properties of spatial aggregation propensity and spatial charge map in different antibody regions from sequences. Our research findings indicate that the machine learning models we developed outperform previous methods in predicting most biophysical properties. Furthermore, the DeepSP model yields similar predictive results compared to molecular dynamic simulations while significantly reducing computational time. The code and parameters are freely available at https://github.com/Lailabcode/AbDev. Also, the webapp, AbDev, for 12 biophysical properties prediction has been developed and provided at https://devpred.onrender.com/AbDev.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"142-153"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Models for Predicting Monoclonal Antibody Biophysical Properties from Molecular Dynamics Simulations and Deep Learning-Based Surface Descriptors.\",\"authors\":\"I-En Wu, Lateefat Kalejaye, Pin-Kuang Lai\",\"doi\":\"10.1021/acs.molpharmaceut.4c00804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Monoclonal antibodies (mAbs) have found extensive applications and development in treating various diseases. From the pharmaceutical industry's perspective, the journey from the design and development of mAbs to clinical testing and large-scale production is a highly time-consuming and resource-intensive process. During the research and development phase, assessing and optimizing the developability of mAbs is of paramount importance to ensure their success as candidates for therapeutic drugs. The critical factors influencing mAb development are their biophysical properties, such as aggregation propensity, solubility, and viscosity. This study utilized a data set comprising 12 biophysical properties of 137 antibodies from a previous study (Proc Natl Acad Sci USA. 114(5):944-949, 2017). We employed full-length antibody molecular dynamics simulations and machine learning techniques to predict experimental data for these 12 biophysical properties. Additionally, we utilized a newly developed deep learning model called DeepSP, which directly predicts the dynamical and structural properties of spatial aggregation propensity and spatial charge map in different antibody regions from sequences. Our research findings indicate that the machine learning models we developed outperform previous methods in predicting most biophysical properties. Furthermore, the DeepSP model yields similar predictive results compared to molecular dynamic simulations while significantly reducing computational time. The code and parameters are freely available at https://github.com/Lailabcode/AbDev. Also, the webapp, AbDev, for 12 biophysical properties prediction has been developed and provided at https://devpred.onrender.com/AbDev.</p>\",\"PeriodicalId\":52,\"journal\":{\"name\":\"Molecular Pharmaceutics\",\"volume\":\" \",\"pages\":\"142-153\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.4c00804\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c00804","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Machine Learning Models for Predicting Monoclonal Antibody Biophysical Properties from Molecular Dynamics Simulations and Deep Learning-Based Surface Descriptors.
Monoclonal antibodies (mAbs) have found extensive applications and development in treating various diseases. From the pharmaceutical industry's perspective, the journey from the design and development of mAbs to clinical testing and large-scale production is a highly time-consuming and resource-intensive process. During the research and development phase, assessing and optimizing the developability of mAbs is of paramount importance to ensure their success as candidates for therapeutic drugs. The critical factors influencing mAb development are their biophysical properties, such as aggregation propensity, solubility, and viscosity. This study utilized a data set comprising 12 biophysical properties of 137 antibodies from a previous study (Proc Natl Acad Sci USA. 114(5):944-949, 2017). We employed full-length antibody molecular dynamics simulations and machine learning techniques to predict experimental data for these 12 biophysical properties. Additionally, we utilized a newly developed deep learning model called DeepSP, which directly predicts the dynamical and structural properties of spatial aggregation propensity and spatial charge map in different antibody regions from sequences. Our research findings indicate that the machine learning models we developed outperform previous methods in predicting most biophysical properties. Furthermore, the DeepSP model yields similar predictive results compared to molecular dynamic simulations while significantly reducing computational time. The code and parameters are freely available at https://github.com/Lailabcode/AbDev. Also, the webapp, AbDev, for 12 biophysical properties prediction has been developed and provided at https://devpred.onrender.com/AbDev.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.