交换耦合自旋电子发射器产生太赫兹效应

Roman Adam, Derang Cao, Daniel E. Bürgler, Sarah Heidtfeld, Fangzhou Wang, Christian Greb, Jing Cheng, Debamitra Chakraborty, Ivan Komissarov, Markus Büscher, Martin Mikulics, Hilde Hardtdegen, Roman Sobolewski, Claus M. Schneider
{"title":"交换耦合自旋电子发射器产生太赫兹效应","authors":"Roman Adam, Derang Cao, Daniel E. Bürgler, Sarah Heidtfeld, Fangzhou Wang, Christian Greb, Jing Cheng, Debamitra Chakraborty, Ivan Komissarov, Markus Büscher, Martin Mikulics, Hilde Hardtdegen, Roman Sobolewski, Claus M. Schneider","doi":"10.1038/s44306-024-00061-0","DOIUrl":null,"url":null,"abstract":"The mechanism of THz generation in ferromagnet/metal (F/M) bilayers has been typically ascribed to the inverse spin Hall effect (ISHE). Here, we fabricated Pt/Fe/Cr/Fe/Pt multilayers containing two back-to-back spintronic THz emitters separated by a thin (tCr≤ 3nm) wedge-shaped Cr spacer. In such an arrangement, magnetization alignment of the two Fe films can be controlled by the interplay between Cr-mediated interlayer exchange coupling (IEC) and an external magnetic field. This in turn results in a strong variation of the THz amplitude A, with A↑↓ reaching up to 14 times A↑↑ (arrows indicate the relative alignment of the magnetization of the two magnetic layers). This observed functionality is ascribed to the interference of THz transients generated by two closely spaced THz emitters. Moreover, the magnetic field dependence A(H) shows a strong asymmetry that points to an additional performance modulation of the THz emitter via IEC and multilayer design.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00061-0.pdf","citationCount":"0","resultStr":"{\"title\":\"THz generation by exchange-coupled spintronic emitters\",\"authors\":\"Roman Adam, Derang Cao, Daniel E. Bürgler, Sarah Heidtfeld, Fangzhou Wang, Christian Greb, Jing Cheng, Debamitra Chakraborty, Ivan Komissarov, Markus Büscher, Martin Mikulics, Hilde Hardtdegen, Roman Sobolewski, Claus M. Schneider\",\"doi\":\"10.1038/s44306-024-00061-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mechanism of THz generation in ferromagnet/metal (F/M) bilayers has been typically ascribed to the inverse spin Hall effect (ISHE). Here, we fabricated Pt/Fe/Cr/Fe/Pt multilayers containing two back-to-back spintronic THz emitters separated by a thin (tCr≤ 3nm) wedge-shaped Cr spacer. In such an arrangement, magnetization alignment of the two Fe films can be controlled by the interplay between Cr-mediated interlayer exchange coupling (IEC) and an external magnetic field. This in turn results in a strong variation of the THz amplitude A, with A↑↓ reaching up to 14 times A↑↑ (arrows indicate the relative alignment of the magnetization of the two magnetic layers). This observed functionality is ascribed to the interference of THz transients generated by two closely spaced THz emitters. Moreover, the magnetic field dependence A(H) shows a strong asymmetry that points to an additional performance modulation of the THz emitter via IEC and multilayer design.\",\"PeriodicalId\":501713,\"journal\":{\"name\":\"npj Spintronics\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44306-024-00061-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Spintronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44306-024-00061-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Spintronics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44306-024-00061-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在铁磁体/金属(F/M)双层膜中产生太赫兹的机制通常归因于逆自旋霍尔效应(ISHE)。在这里,我们制作了铂/铁/铬/铁/铂多层膜,其中包含两个背靠背的自旋电子太赫兹发射器,它们被薄薄的(tCr≤ 3nm)楔形铬间隔物隔开。在这种排列中,两层铁膜的磁化排列可由铬介导的层间交换耦合(IEC)和外部磁场之间的相互作用来控制。这反过来又导致太赫兹振幅 A 的强烈变化,A↑↓ 可达到 A↑↑ 的 14 倍(箭头表示两个磁层磁化的相对排列)。这种观察到的功能可归因于两个间隔很近的太赫兹发射器产生的太赫兹瞬态干扰。此外,磁场依赖性 A(H) 显示出强烈的不对称性,这表明太赫兹发射器通过 IEC 和多层设计实现了额外的性能调制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

THz generation by exchange-coupled spintronic emitters

THz generation by exchange-coupled spintronic emitters
The mechanism of THz generation in ferromagnet/metal (F/M) bilayers has been typically ascribed to the inverse spin Hall effect (ISHE). Here, we fabricated Pt/Fe/Cr/Fe/Pt multilayers containing two back-to-back spintronic THz emitters separated by a thin (tCr≤ 3nm) wedge-shaped Cr spacer. In such an arrangement, magnetization alignment of the two Fe films can be controlled by the interplay between Cr-mediated interlayer exchange coupling (IEC) and an external magnetic field. This in turn results in a strong variation of the THz amplitude A, with A↑↓ reaching up to 14 times A↑↑ (arrows indicate the relative alignment of the magnetization of the two magnetic layers). This observed functionality is ascribed to the interference of THz transients generated by two closely spaced THz emitters. Moreover, the magnetic field dependence A(H) shows a strong asymmetry that points to an additional performance modulation of the THz emitter via IEC and multilayer design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信