{"title":"探测强耦合下的不育中微子凝固现象","authors":"Niko Koivunen, Oleg Lebedev, Martti Raidal","doi":"10.1140/epjc/s10052-024-13583-y","DOIUrl":null,"url":null,"abstract":"<div><p>The regime of dark matter (DM) freeze-in at stronger coupling interpolates between freeze-in and freeze-out. It relies on Boltzmann-suppressed dark matter production, implying that the Standard Model bath temperature never exceeds the dark matter mass. In this work, we study this regime in the context of sterile neutrino dark matter, which can be sufficiently long-lived for a tiny sterile-active mixing. The sterile neutrino is assumed to couple to a real singlet scalar, providing for a thermal production mechanism of the former. We find that DM mass can range from GeV to tens of TeV consistently with all the constraints. The most interesting aspect of the consequent freeze-in phenomenology is that the sterile neutrino dark matter can be probed efficiently by both direct detection experiments and invisible Higgs decay at the LHC.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 11","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13583-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Probing sterile neutrino freeze-in at stronger coupling\",\"authors\":\"Niko Koivunen, Oleg Lebedev, Martti Raidal\",\"doi\":\"10.1140/epjc/s10052-024-13583-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The regime of dark matter (DM) freeze-in at stronger coupling interpolates between freeze-in and freeze-out. It relies on Boltzmann-suppressed dark matter production, implying that the Standard Model bath temperature never exceeds the dark matter mass. In this work, we study this regime in the context of sterile neutrino dark matter, which can be sufficiently long-lived for a tiny sterile-active mixing. The sterile neutrino is assumed to couple to a real singlet scalar, providing for a thermal production mechanism of the former. We find that DM mass can range from GeV to tens of TeV consistently with all the constraints. The most interesting aspect of the consequent freeze-in phenomenology is that the sterile neutrino dark matter can be probed efficiently by both direct detection experiments and invisible Higgs decay at the LHC.</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"84 11\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13583-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-024-13583-y\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13583-y","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Probing sterile neutrino freeze-in at stronger coupling
The regime of dark matter (DM) freeze-in at stronger coupling interpolates between freeze-in and freeze-out. It relies on Boltzmann-suppressed dark matter production, implying that the Standard Model bath temperature never exceeds the dark matter mass. In this work, we study this regime in the context of sterile neutrino dark matter, which can be sufficiently long-lived for a tiny sterile-active mixing. The sterile neutrino is assumed to couple to a real singlet scalar, providing for a thermal production mechanism of the former. We find that DM mass can range from GeV to tens of TeV consistently with all the constraints. The most interesting aspect of the consequent freeze-in phenomenology is that the sterile neutrino dark matter can be probed efficiently by both direct detection experiments and invisible Higgs decay at the LHC.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.