作为模块组矩阵系数的鲁伊塞纳斯波函数

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Philippe Di Francesco, Rinat Kedem, Sergey Khoroshkin, Gus Schrader, Alexander Shapiro
{"title":"作为模块组矩阵系数的鲁伊塞纳斯波函数","authors":"Philippe Di Francesco,&nbsp;Rinat Kedem,&nbsp;Sergey Khoroshkin,&nbsp;Gus Schrader,&nbsp;Alexander Shapiro","doi":"10.1007/s11005-024-01881-1","DOIUrl":null,"url":null,"abstract":"<div><p>We give a description of the Hallnäs–Ruijsenaars eigenfunctions of the 2-particle hyperbolic Ruijsenaars system as matrix coefficients for the order 4 element <span>\\(S\\in SL(2,{\\mathbb {Z}})\\)</span> acting on the Hilbert space of <i>GL</i>(2) quantum Teichmüller theory on the punctured torus. The <i>GL</i>(2) Macdonald polynomials are then obtained as special values of the analytic continuation of these matrix coefficients. The main tool used in the proof is the cluster structure on the moduli space of framed <i>GL</i>(2)-local systems on the punctured torus, and an <span>\\(SL(2,{\\mathbb {Z}})\\)</span>-equivariant embedding of the <i>GL</i>(2) spherical DAHA into the quantized coordinate ring of the corresponding cluster Poisson variety.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-024-01881-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Ruijsenaars wavefunctions as modular group matrix coefficients\",\"authors\":\"Philippe Di Francesco,&nbsp;Rinat Kedem,&nbsp;Sergey Khoroshkin,&nbsp;Gus Schrader,&nbsp;Alexander Shapiro\",\"doi\":\"10.1007/s11005-024-01881-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We give a description of the Hallnäs–Ruijsenaars eigenfunctions of the 2-particle hyperbolic Ruijsenaars system as matrix coefficients for the order 4 element <span>\\\\(S\\\\in SL(2,{\\\\mathbb {Z}})\\\\)</span> acting on the Hilbert space of <i>GL</i>(2) quantum Teichmüller theory on the punctured torus. The <i>GL</i>(2) Macdonald polynomials are then obtained as special values of the analytic continuation of these matrix coefficients. The main tool used in the proof is the cluster structure on the moduli space of framed <i>GL</i>(2)-local systems on the punctured torus, and an <span>\\\\(SL(2,{\\\\mathbb {Z}})\\\\)</span>-equivariant embedding of the <i>GL</i>(2) spherical DAHA into the quantized coordinate ring of the corresponding cluster Poisson variety.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"114 6\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11005-024-01881-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-024-01881-1\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01881-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们以作用于穿刺环上的 GL(2) 量子 Teichmüller 理论的希尔伯特空间的 4 阶元素 \(S\in SL(2,{\mathbb {Z}})\) 的矩阵系数来描述 2 粒子双曲 Ruijsenaars 系统的 Hallnäs-Ruijsenaars 特征函数。然后,GL(2) 麦克唐纳多项式就可以作为这些矩阵系数的解析延续的特殊值而得到。证明中使用的主要工具是穿刺环上有框 GL(2) 局部系统模空间上的簇结构,以及 GL(2) 球面 DAHA 到相应簇泊松数的量化坐标环的\(SL(2,{\mathbb {Z}})\)-后向嵌入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ruijsenaars wavefunctions as modular group matrix coefficients

We give a description of the Hallnäs–Ruijsenaars eigenfunctions of the 2-particle hyperbolic Ruijsenaars system as matrix coefficients for the order 4 element \(S\in SL(2,{\mathbb {Z}})\) acting on the Hilbert space of GL(2) quantum Teichmüller theory on the punctured torus. The GL(2) Macdonald polynomials are then obtained as special values of the analytic continuation of these matrix coefficients. The main tool used in the proof is the cluster structure on the moduli space of framed GL(2)-local systems on the punctured torus, and an \(SL(2,{\mathbb {Z}})\)-equivariant embedding of the GL(2) spherical DAHA into the quantized coordinate ring of the corresponding cluster Poisson variety.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信