实现弹性电动汽车充电监控系统:课程引导的多特性融合变压器

IF 7.9 1区 工程技术 Q1 ENGINEERING, CIVIL
Duo Li;Junqing Tang;Bei Zhou;Peng Cao;Jia Hu;Man-Fai Leung;Yonggang Wang
{"title":"实现弹性电动汽车充电监控系统:课程引导的多特性融合变压器","authors":"Duo Li;Junqing Tang;Bei Zhou;Peng Cao;Jia Hu;Man-Fai Leung;Yonggang Wang","doi":"10.1109/TITS.2024.3456843","DOIUrl":null,"url":null,"abstract":"With the booming adoption of Electric Vehicles (EVs) globally, the need for reliable and resilient EV Charging Monitoring (EVCM) systems has become crucial. A major challenge in real-time EVCM is the handling of missing data caused by unexpected events, which can impair both real-time monitoring and its downstream applications. To address this vital yet underexplored issue, we propose a curriculum guided multi-feature fusion transformer (CurriFusFormer) learning framework – a novel approach designed to enhance the resilience of EVCM systems against real-time information omissions. Our framework integrates curriculum learning with a multi-feature fusion transformer model, capable of handling various patterns and rates of missing data, ranging from random to block omissions. This innovative approach leverages spatial, temporal, and static features to generate accurate real-time estimations for missing values in diverse scenarios. Extensive experiments on a real-world EVCM dataset demonstrate that CurriFusFormer can perform well with \n<inline-formula> <tex-math>$R^{2}$ </tex-math></inline-formula>\n ranging from 0.92 to 0.83 given the rising missing rate from 30-90%, outperforming seven popular and state-of-the-art methods, especially in scenarios with high missing rates and complex patterns, such as, at 90% missing rate, kNN (\n<inline-formula> <tex-math>$R^{2} =0.65$ </tex-math></inline-formula>\n), XGBoost (\n<inline-formula> <tex-math>$R^{2} =0.78$ </tex-math></inline-formula>\n), BRITS (\n<inline-formula> <tex-math>$R^{2} =0.79$ </tex-math></inline-formula>\n), TFT (\n<inline-formula> <tex-math>$R^{2} =0.80$ </tex-math></inline-formula>\n), and GRIN (\n<inline-formula> <tex-math>$R^{2} =0.82$ </tex-math></inline-formula>\n). All results suggest that the proposed framework could be a promising solution for developing future resilient EVCM networks.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"25 12","pages":"21356-21366"},"PeriodicalIF":7.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Resilient Electric Vehicle Charging Monitoring Systems: Curriculum Guided Multi-Feature Fusion Transformer\",\"authors\":\"Duo Li;Junqing Tang;Bei Zhou;Peng Cao;Jia Hu;Man-Fai Leung;Yonggang Wang\",\"doi\":\"10.1109/TITS.2024.3456843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the booming adoption of Electric Vehicles (EVs) globally, the need for reliable and resilient EV Charging Monitoring (EVCM) systems has become crucial. A major challenge in real-time EVCM is the handling of missing data caused by unexpected events, which can impair both real-time monitoring and its downstream applications. To address this vital yet underexplored issue, we propose a curriculum guided multi-feature fusion transformer (CurriFusFormer) learning framework – a novel approach designed to enhance the resilience of EVCM systems against real-time information omissions. Our framework integrates curriculum learning with a multi-feature fusion transformer model, capable of handling various patterns and rates of missing data, ranging from random to block omissions. This innovative approach leverages spatial, temporal, and static features to generate accurate real-time estimations for missing values in diverse scenarios. Extensive experiments on a real-world EVCM dataset demonstrate that CurriFusFormer can perform well with \\n<inline-formula> <tex-math>$R^{2}$ </tex-math></inline-formula>\\n ranging from 0.92 to 0.83 given the rising missing rate from 30-90%, outperforming seven popular and state-of-the-art methods, especially in scenarios with high missing rates and complex patterns, such as, at 90% missing rate, kNN (\\n<inline-formula> <tex-math>$R^{2} =0.65$ </tex-math></inline-formula>\\n), XGBoost (\\n<inline-formula> <tex-math>$R^{2} =0.78$ </tex-math></inline-formula>\\n), BRITS (\\n<inline-formula> <tex-math>$R^{2} =0.79$ </tex-math></inline-formula>\\n), TFT (\\n<inline-formula> <tex-math>$R^{2} =0.80$ </tex-math></inline-formula>\\n), and GRIN (\\n<inline-formula> <tex-math>$R^{2} =0.82$ </tex-math></inline-formula>\\n). All results suggest that the proposed framework could be a promising solution for developing future resilient EVCM networks.\",\"PeriodicalId\":13416,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Transportation Systems\",\"volume\":\"25 12\",\"pages\":\"21356-21366\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10705415/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10705415/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

随着全球电动汽车(EV)的蓬勃发展,对可靠、弹性的电动汽车充电监控(EVCM)系统的需求变得至关重要。实时 EVCM 面临的一大挑战是如何处理突发事件造成的数据丢失,这可能会影响实时监控及其下游应用。为了解决这一重要但尚未得到充分探索的问题,我们提出了一种课程引导的多特征融合转换器(CurriFusFormer)学习框架--一种旨在增强 EVCM 系统对实时信息遗漏的适应能力的新方法。我们的框架将课程学习与多特征融合转换器模型整合在一起,能够处理从随机遗漏到块遗漏等各种模式和比率的数据缺失。这种创新方法利用空间、时间和静态特征,在不同场景中对缺失值生成准确的实时估计。在真实世界的 EVCM 数据集上进行的大量实验表明,CurriFusFormer 性能良好,R^{2}$ 从 0.92 到 0.83 的情况下,CurriFusFormer 的表现优于七种流行的先进方法,尤其是在高缺失率和复杂模式的情况下,例如在缺失率为 90% 的情况下,kNN ( $R^{2} =0.65$ ) 、XGBoost ( $R^{2} =0.78$ ) 、BRITS ( $R^{2} =0.79$ ) 、TFT ( $R^{2} =0.80$ ) 和 GRIN ( $R^{2} =0.82$ ) 。所有结果都表明,所提出的框架是开发未来弹性 EVCM 网络的可行方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward Resilient Electric Vehicle Charging Monitoring Systems: Curriculum Guided Multi-Feature Fusion Transformer
With the booming adoption of Electric Vehicles (EVs) globally, the need for reliable and resilient EV Charging Monitoring (EVCM) systems has become crucial. A major challenge in real-time EVCM is the handling of missing data caused by unexpected events, which can impair both real-time monitoring and its downstream applications. To address this vital yet underexplored issue, we propose a curriculum guided multi-feature fusion transformer (CurriFusFormer) learning framework – a novel approach designed to enhance the resilience of EVCM systems against real-time information omissions. Our framework integrates curriculum learning with a multi-feature fusion transformer model, capable of handling various patterns and rates of missing data, ranging from random to block omissions. This innovative approach leverages spatial, temporal, and static features to generate accurate real-time estimations for missing values in diverse scenarios. Extensive experiments on a real-world EVCM dataset demonstrate that CurriFusFormer can perform well with $R^{2}$ ranging from 0.92 to 0.83 given the rising missing rate from 30-90%, outperforming seven popular and state-of-the-art methods, especially in scenarios with high missing rates and complex patterns, such as, at 90% missing rate, kNN ( $R^{2} =0.65$ ), XGBoost ( $R^{2} =0.78$ ), BRITS ( $R^{2} =0.79$ ), TFT ( $R^{2} =0.80$ ), and GRIN ( $R^{2} =0.82$ ). All results suggest that the proposed framework could be a promising solution for developing future resilient EVCM networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Intelligent Transportation Systems
IEEE Transactions on Intelligent Transportation Systems 工程技术-工程:电子与电气
CiteScore
14.80
自引率
12.90%
发文量
1872
审稿时长
7.5 months
期刊介绍: The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信