直接从核磁共振成像光谱数据中发现机械模型的数据驱动型方法

IF 4.2 2区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
David G. J. Heesterbeek;Max H. C. van Riel;Tristan van Leeuwen;Cornelis A. T. van den Berg;Alessandro Sbrizzi
{"title":"直接从核磁共振成像光谱数据中发现机械模型的数据驱动型方法","authors":"David G. J. Heesterbeek;Max H. C. van Riel;Tristan van Leeuwen;Cornelis A. T. van den Berg;Alessandro Sbrizzi","doi":"10.1109/TCI.2024.3497775","DOIUrl":null,"url":null,"abstract":"Finding interpretable biomechanical models can provide insight into the functionality of organs with regard to physiology and disease. However, identifying broadly applicable dynamical models for in vivo tissue remains challenging. In this proof of concept study we propose a reconstruction framework for data-driven discovery of dynamical models from experimentally obtained undersampled MRI spectral data. The method makes use of the previously developed spectro-dynamic framework which allows for reconstruction of displacement fields at high spatial and temporal resolution required for model identification. The proposed framework combines this method with data-driven discovery of interpretable models using Sparse Identification of Non-linear Dynamics (SINDy). The design of the reconstruction algorithm is such that a symbiotic relation between the reconstruction of the displacement fields and the model identification is created. Our method does not rely on periodicity of the motion. It is successfully validated using spectral data of a dynamic phantom gathered on a clinical MRI scanner. The dynamic phantom is programmed to perform motion adhering to 5 different (non-linear) ordinary differential equations. The proposed framework performed better than a 2-step approach where the displacement fields were first reconstructed from the undersampled data without any information on the model, followed by data-driven discovery of the model using the reconstructed displacement fields. This study serves as a first step in the direction of data-driven discovery of in vivo models.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"10 ","pages":"1640-1649"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Discovery of Mechanical Models Directly From MRI Spectral Data\",\"authors\":\"David G. J. Heesterbeek;Max H. C. van Riel;Tristan van Leeuwen;Cornelis A. T. van den Berg;Alessandro Sbrizzi\",\"doi\":\"10.1109/TCI.2024.3497775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding interpretable biomechanical models can provide insight into the functionality of organs with regard to physiology and disease. However, identifying broadly applicable dynamical models for in vivo tissue remains challenging. In this proof of concept study we propose a reconstruction framework for data-driven discovery of dynamical models from experimentally obtained undersampled MRI spectral data. The method makes use of the previously developed spectro-dynamic framework which allows for reconstruction of displacement fields at high spatial and temporal resolution required for model identification. The proposed framework combines this method with data-driven discovery of interpretable models using Sparse Identification of Non-linear Dynamics (SINDy). The design of the reconstruction algorithm is such that a symbiotic relation between the reconstruction of the displacement fields and the model identification is created. Our method does not rely on periodicity of the motion. It is successfully validated using spectral data of a dynamic phantom gathered on a clinical MRI scanner. The dynamic phantom is programmed to perform motion adhering to 5 different (non-linear) ordinary differential equations. The proposed framework performed better than a 2-step approach where the displacement fields were first reconstructed from the undersampled data without any information on the model, followed by data-driven discovery of the model using the reconstructed displacement fields. This study serves as a first step in the direction of data-driven discovery of in vivo models.\",\"PeriodicalId\":56022,\"journal\":{\"name\":\"IEEE Transactions on Computational Imaging\",\"volume\":\"10 \",\"pages\":\"1640-1649\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Imaging\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10752749/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10752749/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

寻找可解释的生物力学模型可以让人们深入了解器官在生理和疾病方面的功能。然而,为体内组织确定广泛适用的动力学模型仍然具有挑战性。在这项概念验证研究中,我们提出了一个重构框架,用于从实验获得的欠采样磁共振成像光谱数据中以数据驱动发现动力学模型。该方法利用了之前开发的光谱动态框架,该框架允许以模型识别所需的高空间和时间分辨率重建位移场。建议的框架将此方法与使用非线性动力学稀疏识别(SINDy)的数据驱动发现可解释模型相结合。重构算法的设计使位移场重构与模型识别之间形成了共生关系。我们的方法不依赖于运动的周期性。我们使用在临床核磁共振成像扫描仪上收集的动态模型的频谱数据对该方法进行了成功验证。动态模型被编程为按照 5 个不同的(非线性)常微分方程进行运动。在这种方法中,首先在没有任何模型信息的情况下从欠采样数据中重建位移场,然后利用重建的位移场进行数据驱动的模型发现。这项研究在数据驱动发现体内模型的方向上迈出了第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Driven Discovery of Mechanical Models Directly From MRI Spectral Data
Finding interpretable biomechanical models can provide insight into the functionality of organs with regard to physiology and disease. However, identifying broadly applicable dynamical models for in vivo tissue remains challenging. In this proof of concept study we propose a reconstruction framework for data-driven discovery of dynamical models from experimentally obtained undersampled MRI spectral data. The method makes use of the previously developed spectro-dynamic framework which allows for reconstruction of displacement fields at high spatial and temporal resolution required for model identification. The proposed framework combines this method with data-driven discovery of interpretable models using Sparse Identification of Non-linear Dynamics (SINDy). The design of the reconstruction algorithm is such that a symbiotic relation between the reconstruction of the displacement fields and the model identification is created. Our method does not rely on periodicity of the motion. It is successfully validated using spectral data of a dynamic phantom gathered on a clinical MRI scanner. The dynamic phantom is programmed to perform motion adhering to 5 different (non-linear) ordinary differential equations. The proposed framework performed better than a 2-step approach where the displacement fields were first reconstructed from the undersampled data without any information on the model, followed by data-driven discovery of the model using the reconstructed displacement fields. This study serves as a first step in the direction of data-driven discovery of in vivo models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Computational Imaging
IEEE Transactions on Computational Imaging Mathematics-Computational Mathematics
CiteScore
8.20
自引率
7.40%
发文量
59
期刊介绍: The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信