Kai Wu;Jacopo Pegoraro;Francesca Meneghello;J. Andrew Zhang;Jesus O. Lacruz;Joerg Widmer;Francesco Restuccia;Michele Rossi;Xiaojing Huang;Daqing Zhang;Giuseppe Caire;Y. Jay Guo
{"title":"具有时钟异步性的双向 ISAC 系统中的传感:信号处理视角[综合传感与通信革命信号处理特刊]","authors":"Kai Wu;Jacopo Pegoraro;Francesca Meneghello;J. Andrew Zhang;Jesus O. Lacruz;Joerg Widmer;Francesco Restuccia;Michele Rossi;Xiaojing Huang;Daqing Zhang;Giuseppe Caire;Y. Jay Guo","doi":"10.1109/MSP.2024.3418725","DOIUrl":null,"url":null,"abstract":"Integrated Sensing And Communication (ISAC) has been identified as a pillar usage scenario for the impending 6G era. Bi-static sensing, a major type of sensing in ISAC, is promising to expedite ISAC in the near future, as it requires minimal changes to the existing network infrastructure. However, a critical challenge for bi-static sensing is clock asynchronism due to the use of different clocks at far-separated transmitters and receivers. This causes the received signal to be affected by time-varying random phase offsets, severely degrading, or even failing, direct sensing. Hence, to effectively enable ISAC, considerable research has been directed toward addressing the clock asynchronism issue in bi-static sensing. This paper provides an overview of the issue and existing techniques developed in an ISAC background. Based on the review and comparison, we also draw insights into the future research directions and open problems, aiming to nurture the maturation of bi-static sensing in ISAC.","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"41 5","pages":"31-43"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensing in Bistatic ISAC Systems With Clock Asynchronism: A signal processing perspective [Special Issue on Signal Processing for the Integrated Sensing and Communications Revolution]\",\"authors\":\"Kai Wu;Jacopo Pegoraro;Francesca Meneghello;J. Andrew Zhang;Jesus O. Lacruz;Joerg Widmer;Francesco Restuccia;Michele Rossi;Xiaojing Huang;Daqing Zhang;Giuseppe Caire;Y. Jay Guo\",\"doi\":\"10.1109/MSP.2024.3418725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrated Sensing And Communication (ISAC) has been identified as a pillar usage scenario for the impending 6G era. Bi-static sensing, a major type of sensing in ISAC, is promising to expedite ISAC in the near future, as it requires minimal changes to the existing network infrastructure. However, a critical challenge for bi-static sensing is clock asynchronism due to the use of different clocks at far-separated transmitters and receivers. This causes the received signal to be affected by time-varying random phase offsets, severely degrading, or even failing, direct sensing. Hence, to effectively enable ISAC, considerable research has been directed toward addressing the clock asynchronism issue in bi-static sensing. This paper provides an overview of the issue and existing techniques developed in an ISAC background. Based on the review and comparison, we also draw insights into the future research directions and open problems, aiming to nurture the maturation of bi-static sensing in ISAC.\",\"PeriodicalId\":13246,\"journal\":{\"name\":\"IEEE Signal Processing Magazine\",\"volume\":\"41 5\",\"pages\":\"31-43\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Magazine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10769985/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Magazine","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10769985/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Sensing in Bistatic ISAC Systems With Clock Asynchronism: A signal processing perspective [Special Issue on Signal Processing for the Integrated Sensing and Communications Revolution]
Integrated Sensing And Communication (ISAC) has been identified as a pillar usage scenario for the impending 6G era. Bi-static sensing, a major type of sensing in ISAC, is promising to expedite ISAC in the near future, as it requires minimal changes to the existing network infrastructure. However, a critical challenge for bi-static sensing is clock asynchronism due to the use of different clocks at far-separated transmitters and receivers. This causes the received signal to be affected by time-varying random phase offsets, severely degrading, or even failing, direct sensing. Hence, to effectively enable ISAC, considerable research has been directed toward addressing the clock asynchronism issue in bi-static sensing. This paper provides an overview of the issue and existing techniques developed in an ISAC background. Based on the review and comparison, we also draw insights into the future research directions and open problems, aiming to nurture the maturation of bi-static sensing in ISAC.
期刊介绍:
EEE Signal Processing Magazine is a publication that focuses on signal processing research and applications. It publishes tutorial-style articles, columns, and forums that cover a wide range of topics related to signal processing. The magazine aims to provide the research, educational, and professional communities with the latest technical developments, issues, and events in the field. It serves as the main communication platform for the society, addressing important matters that concern all members.