Ruikun Luo;Qiang He;Mengxi Xu;Feifei Chen;Song Wu;Jing Yang;Yuan Gao;Hai Jin
{"title":"不确定情况下的边缘重复数据删除:稳健的优化方法","authors":"Ruikun Luo;Qiang He;Mengxi Xu;Feifei Chen;Song Wu;Jing Yang;Yuan Gao;Hai Jin","doi":"10.1109/TPDS.2024.3493959","DOIUrl":null,"url":null,"abstract":"The emergence of \n<italic>mobile edge computing</i>\n (MEC) in distributed systems has sparked increased attention toward edge data management. A conflict arises from the disparity between limited edge resources and the continuously expanding data requests for data storage, making the reduction of data storage costs a critical objective. Despite the extensive studies of edge data deduplication as a data reduction technique, existing deduplication methods encounter numerous challenges in MEC environments. These challenges stem from disparities between edge servers and cloud data center edge servers, as well as uncertainties such as user mobility, leading to insufficient robustness in deduplication decision-making. Consequently, this paper presents a robust optimization-based approach for the edge data deduplication problem. By accounting for uncertainties including the number of data requirements and edge server failures, we propose two distinct solving algorithms: uEDDE-C, a two-stage algorithm based on column-and-constraint generation, and uEDDE-A, an approximation algorithm to address the high computation overhead of uEDDE-C. Our method facilitates efficient data deduplication in volatile edge network environments and maintains robustness across various uncertain scenarios. We validate the performance and robustness of uEDDE-C and uEDDE-A through theoretical analysis and experimental evaluations. The extensive experimental results demonstrate that our approach significantly reduces data storage cost and data retrieval latency while ensuring reliability in real-world MEC environments.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 1","pages":"84-95"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747105","citationCount":"0","resultStr":"{\"title\":\"Edge Data Deduplication Under Uncertainties: A Robust Optimization Approach\",\"authors\":\"Ruikun Luo;Qiang He;Mengxi Xu;Feifei Chen;Song Wu;Jing Yang;Yuan Gao;Hai Jin\",\"doi\":\"10.1109/TPDS.2024.3493959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of \\n<italic>mobile edge computing</i>\\n (MEC) in distributed systems has sparked increased attention toward edge data management. A conflict arises from the disparity between limited edge resources and the continuously expanding data requests for data storage, making the reduction of data storage costs a critical objective. Despite the extensive studies of edge data deduplication as a data reduction technique, existing deduplication methods encounter numerous challenges in MEC environments. These challenges stem from disparities between edge servers and cloud data center edge servers, as well as uncertainties such as user mobility, leading to insufficient robustness in deduplication decision-making. Consequently, this paper presents a robust optimization-based approach for the edge data deduplication problem. By accounting for uncertainties including the number of data requirements and edge server failures, we propose two distinct solving algorithms: uEDDE-C, a two-stage algorithm based on column-and-constraint generation, and uEDDE-A, an approximation algorithm to address the high computation overhead of uEDDE-C. Our method facilitates efficient data deduplication in volatile edge network environments and maintains robustness across various uncertain scenarios. We validate the performance and robustness of uEDDE-C and uEDDE-A through theoretical analysis and experimental evaluations. The extensive experimental results demonstrate that our approach significantly reduces data storage cost and data retrieval latency while ensuring reliability in real-world MEC environments.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"36 1\",\"pages\":\"84-95\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747105\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10747105/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10747105/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Edge Data Deduplication Under Uncertainties: A Robust Optimization Approach
The emergence of
mobile edge computing
(MEC) in distributed systems has sparked increased attention toward edge data management. A conflict arises from the disparity between limited edge resources and the continuously expanding data requests for data storage, making the reduction of data storage costs a critical objective. Despite the extensive studies of edge data deduplication as a data reduction technique, existing deduplication methods encounter numerous challenges in MEC environments. These challenges stem from disparities between edge servers and cloud data center edge servers, as well as uncertainties such as user mobility, leading to insufficient robustness in deduplication decision-making. Consequently, this paper presents a robust optimization-based approach for the edge data deduplication problem. By accounting for uncertainties including the number of data requirements and edge server failures, we propose two distinct solving algorithms: uEDDE-C, a two-stage algorithm based on column-and-constraint generation, and uEDDE-A, an approximation algorithm to address the high computation overhead of uEDDE-C. Our method facilitates efficient data deduplication in volatile edge network environments and maintains robustness across various uncertain scenarios. We validate the performance and robustness of uEDDE-C and uEDDE-A through theoretical analysis and experimental evaluations. The extensive experimental results demonstrate that our approach significantly reduces data storage cost and data retrieval latency while ensuring reliability in real-world MEC environments.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.