回溯可用的 CPU 资源:在数据中心防止违反服务水平协议的 SMT 感知调度

IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Haoyu Liao;Tong-yu Liu;Jianmei Guo;Bo Huang;Dingyu Yang;Jonathan Ding
{"title":"回溯可用的 CPU 资源:在数据中心防止违反服务水平协议的 SMT 感知调度","authors":"Haoyu Liao;Tong-yu Liu;Jianmei Guo;Bo Huang;Dingyu Yang;Jonathan Ding","doi":"10.1109/TPDS.2024.3494879","DOIUrl":null,"url":null,"abstract":"The article focuses on an understudied yet fundamental problem: existing methods typically average the utilization of multiple hardware threads to evaluate the available CPU resources. However, the approach could underestimate the actual usage of the underlying physical core for Simultaneous Multi-Threading (SMT) processors, leading to an overestimation of remaining resources. The overestimation propagates from microarchitecture to operating systems and cloud schedulers, which may misguide scheduling decisions, exacerbate CPU overcommitment, and increase Service Level Agreement (SLA) violations. To address the potential overestimation problem, we propose an SMT-aware and purely data-driven approach named \n<italic>Remaining CPU</i>\n (RCPU) that reserves more CPU resources to restrict CPU overcommitment and prevent SLA violations. RCPU requires only a few modifications to the existing cloud infrastructures and can be scaled up to large data centers. Extensive evaluations in the data center proved that RCPU contributes to a reduction of SLA violations by 18% on average for 98% of all latency-sensitive applications. Under a benchmarking experiment, we prove that RCPU increases the accuracy by 69% in terms of Mean Absolute Error (MAE) compared to the state-of-the-art.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 1","pages":"67-83"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retrospecting Available CPU Resources: SMT-Aware Scheduling to Prevent SLA Violations in Data Centers\",\"authors\":\"Haoyu Liao;Tong-yu Liu;Jianmei Guo;Bo Huang;Dingyu Yang;Jonathan Ding\",\"doi\":\"10.1109/TPDS.2024.3494879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article focuses on an understudied yet fundamental problem: existing methods typically average the utilization of multiple hardware threads to evaluate the available CPU resources. However, the approach could underestimate the actual usage of the underlying physical core for Simultaneous Multi-Threading (SMT) processors, leading to an overestimation of remaining resources. The overestimation propagates from microarchitecture to operating systems and cloud schedulers, which may misguide scheduling decisions, exacerbate CPU overcommitment, and increase Service Level Agreement (SLA) violations. To address the potential overestimation problem, we propose an SMT-aware and purely data-driven approach named \\n<italic>Remaining CPU</i>\\n (RCPU) that reserves more CPU resources to restrict CPU overcommitment and prevent SLA violations. RCPU requires only a few modifications to the existing cloud infrastructures and can be scaled up to large data centers. Extensive evaluations in the data center proved that RCPU contributes to a reduction of SLA violations by 18% on average for 98% of all latency-sensitive applications. Under a benchmarking experiment, we prove that RCPU increases the accuracy by 69% in terms of Mean Absolute Error (MAE) compared to the state-of-the-art.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"36 1\",\"pages\":\"67-83\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10748366/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10748366/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

文章重点讨论了一个未被充分研究的基本问题:现有方法通常通过平均多个硬件线程的利用率来评估可用的 CPU 资源。然而,这种方法可能会低估同时多线程(SMT)处理器底层物理内核的实际使用率,从而导致高估剩余资源。这种高估会从微体系结构传播到操作系统和云调度程序,可能会误导调度决策,加剧 CPU 的超负荷,并增加违反服务水平协议(SLA)的情况。为了解决潜在的高估问题,我们提出了一种 SMT 感知和纯数据驱动的方法,即剩余 CPU(RCPU),它可以保留更多的 CPU 资源,以限制 CPU 过度分配并防止违反 SLA。RCPU 只需对现有云基础设施进行少量修改,即可扩展到大型数据中心。在数据中心进行的广泛评估证明,对于 98% 的延迟敏感型应用而言,RCPU 可将违反 SLA 的情况平均减少 18%。在基准实验中,我们证明 RCPU 在平均绝对误差 (MAE) 方面比最先进的技术提高了 69%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Retrospecting Available CPU Resources: SMT-Aware Scheduling to Prevent SLA Violations in Data Centers
The article focuses on an understudied yet fundamental problem: existing methods typically average the utilization of multiple hardware threads to evaluate the available CPU resources. However, the approach could underestimate the actual usage of the underlying physical core for Simultaneous Multi-Threading (SMT) processors, leading to an overestimation of remaining resources. The overestimation propagates from microarchitecture to operating systems and cloud schedulers, which may misguide scheduling decisions, exacerbate CPU overcommitment, and increase Service Level Agreement (SLA) violations. To address the potential overestimation problem, we propose an SMT-aware and purely data-driven approach named Remaining CPU (RCPU) that reserves more CPU resources to restrict CPU overcommitment and prevent SLA violations. RCPU requires only a few modifications to the existing cloud infrastructures and can be scaled up to large data centers. Extensive evaluations in the data center proved that RCPU contributes to a reduction of SLA violations by 18% on average for 98% of all latency-sensitive applications. Under a benchmarking experiment, we prove that RCPU increases the accuracy by 69% in terms of Mean Absolute Error (MAE) compared to the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Parallel and Distributed Systems
IEEE Transactions on Parallel and Distributed Systems 工程技术-工程:电子与电气
CiteScore
11.00
自引率
9.40%
发文量
281
审稿时长
5.6 months
期刊介绍: IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to: a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing. b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems. c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation. d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信