用于生物传感的具有高 Q 值法诺共振的太赫兹元表面

Linda Shao;Zhihang Wang;Ning Mu;Tunan Chen;Weiren Zhu
{"title":"用于生物传感的具有高 Q 值法诺共振的太赫兹元表面","authors":"Linda Shao;Zhihang Wang;Ning Mu;Tunan Chen;Weiren Zhu","doi":"10.1109/JSAS.2024.3487487","DOIUrl":null,"url":null,"abstract":"High-quality factor Fano resonances offer exceptional potential for the creation of ultrasensitive refractive index sensors owing to their capacity to facilitate robust interactions between electromagnetic waves and analytes. In this article, we introduce a general approach for designing sensitive metasurface sensors leveraging high-Q Fano resonances. The metasurface, composed of metallic strips varying in length, produces the characteristic Fano line shape through the interference of bright and dark modes. Our findings reveal a remarkable sensitivity of up to 0.473 THz/RIU at 2.37 THz, with a maximum resonance Q value attainment of 38.12. The tunable properties of Fano resonances can be fine-tuned by adjusting geometric parameters. As a demonstration of the practical applicability of these high-Q resonances, we conducted experimental assessments of the metasurface sensor's performance in detecting the concentrations of bovine serum albumin and glucose. Notably, both the resonance frequency and amplitude undergo significant changes in response to increasing analyte concentrations. This allows for rapid and precise determination of both the concentration and molecule type based on observed frequency shifts. Our strategy paves the way for the design of ultrasensitive real-time sensors operating in the terahertz regime.","PeriodicalId":100622,"journal":{"name":"IEEE Journal of Selected Areas in Sensors","volume":"1 ","pages":"272-279"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10737402","citationCount":"0","resultStr":"{\"title\":\"Terahertz Metasurface With High-Q Fano Resonance for Bio-Sensing\",\"authors\":\"Linda Shao;Zhihang Wang;Ning Mu;Tunan Chen;Weiren Zhu\",\"doi\":\"10.1109/JSAS.2024.3487487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-quality factor Fano resonances offer exceptional potential for the creation of ultrasensitive refractive index sensors owing to their capacity to facilitate robust interactions between electromagnetic waves and analytes. In this article, we introduce a general approach for designing sensitive metasurface sensors leveraging high-Q Fano resonances. The metasurface, composed of metallic strips varying in length, produces the characteristic Fano line shape through the interference of bright and dark modes. Our findings reveal a remarkable sensitivity of up to 0.473 THz/RIU at 2.37 THz, with a maximum resonance Q value attainment of 38.12. The tunable properties of Fano resonances can be fine-tuned by adjusting geometric parameters. As a demonstration of the practical applicability of these high-Q resonances, we conducted experimental assessments of the metasurface sensor's performance in detecting the concentrations of bovine serum albumin and glucose. Notably, both the resonance frequency and amplitude undergo significant changes in response to increasing analyte concentrations. This allows for rapid and precise determination of both the concentration and molecule type based on observed frequency shifts. Our strategy paves the way for the design of ultrasensitive real-time sensors operating in the terahertz regime.\",\"PeriodicalId\":100622,\"journal\":{\"name\":\"IEEE Journal of Selected Areas in Sensors\",\"volume\":\"1 \",\"pages\":\"272-279\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10737402\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Areas in Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10737402/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Areas in Sensors","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10737402/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于高质量因子法诺共振能够促进电磁波与分析物之间的稳健相互作用,因此为制造超灵敏折射率传感器提供了非凡的潜力。在本文中,我们介绍了一种利用高 Q 值法诺共振设计灵敏元表面传感器的通用方法。元表面由不同长度的金属带组成,通过明暗模式的干涉产生特征性的法诺线形状。我们的研究结果表明,在 2.37 太赫兹频率下,灵敏度高达 0.473 太赫兹/RIU,最大共振 Q 值为 38.12。法诺共振的可调特性可通过调整几何参数进行微调。为了证明这些高 Q 值共振的实际应用性,我们对元表面传感器检测牛血清白蛋白和葡萄糖浓度的性能进行了实验评估。值得注意的是,随着分析物浓度的增加,共振频率和振幅都会发生显著变化。这样就可以根据观察到的频率变化,快速准确地确定浓度和分子类型。我们的策略为设计在太赫兹机制下工作的超灵敏实时传感器铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Terahertz Metasurface With High-Q Fano Resonance for Bio-Sensing
High-quality factor Fano resonances offer exceptional potential for the creation of ultrasensitive refractive index sensors owing to their capacity to facilitate robust interactions between electromagnetic waves and analytes. In this article, we introduce a general approach for designing sensitive metasurface sensors leveraging high-Q Fano resonances. The metasurface, composed of metallic strips varying in length, produces the characteristic Fano line shape through the interference of bright and dark modes. Our findings reveal a remarkable sensitivity of up to 0.473 THz/RIU at 2.37 THz, with a maximum resonance Q value attainment of 38.12. The tunable properties of Fano resonances can be fine-tuned by adjusting geometric parameters. As a demonstration of the practical applicability of these high-Q resonances, we conducted experimental assessments of the metasurface sensor's performance in detecting the concentrations of bovine serum albumin and glucose. Notably, both the resonance frequency and amplitude undergo significant changes in response to increasing analyte concentrations. This allows for rapid and precise determination of both the concentration and molecule type based on observed frequency shifts. Our strategy paves the way for the design of ultrasensitive real-time sensors operating in the terahertz regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信