{"title":"影响使用宽探测器 CT 进行冠状动脉 CTA 的辐射剂量和图像质量的因素综述。","authors":"Yihan Fan, Tian Qin, Qingting Sun, Mengting Wang, Baohui Liang","doi":"10.3390/tomography10110127","DOIUrl":null,"url":null,"abstract":"<p><p>Compared with traditional invasive coronary angiography (ICA), coronary CT angiography (CCTA) has the advantages of being rapid, economical, and minimally invasive. The wide-detector CT, with its superior temporal resolution and robust three-dimensional reconstruction technology, thus enables CCTA in patients with high heart rates and arrhythmias, leading to a high potential for clinical application. This paper systematically summarizes wide-detector CT hardware configurations of various vendors routinely used for CCTA examinations and reviews the effects of patient heart rate and heart rate variability, scanning modality, reconstruction algorithms, tube voltage, and scanning field of view on image quality and radiation dose. In addition, novel technologies in the field of CT applied to CCTA examinations are also presented. Since this examination has a diagnostic accuracy that is highly consistent with ICA, it can be further used as a routine examination tool for coronary artery disease in clinical practice.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"10 11","pages":"1730-1743"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598146/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Review of Factors Affecting Radiation Dose and Image Quality in Coronary CTA Performed with Wide-Detector CT.\",\"authors\":\"Yihan Fan, Tian Qin, Qingting Sun, Mengting Wang, Baohui Liang\",\"doi\":\"10.3390/tomography10110127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Compared with traditional invasive coronary angiography (ICA), coronary CT angiography (CCTA) has the advantages of being rapid, economical, and minimally invasive. The wide-detector CT, with its superior temporal resolution and robust three-dimensional reconstruction technology, thus enables CCTA in patients with high heart rates and arrhythmias, leading to a high potential for clinical application. This paper systematically summarizes wide-detector CT hardware configurations of various vendors routinely used for CCTA examinations and reviews the effects of patient heart rate and heart rate variability, scanning modality, reconstruction algorithms, tube voltage, and scanning field of view on image quality and radiation dose. In addition, novel technologies in the field of CT applied to CCTA examinations are also presented. Since this examination has a diagnostic accuracy that is highly consistent with ICA, it can be further used as a routine examination tool for coronary artery disease in clinical practice.</p>\",\"PeriodicalId\":51330,\"journal\":{\"name\":\"Tomography\",\"volume\":\"10 11\",\"pages\":\"1730-1743\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598146/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tomography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/tomography10110127\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography10110127","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
A Review of Factors Affecting Radiation Dose and Image Quality in Coronary CTA Performed with Wide-Detector CT.
Compared with traditional invasive coronary angiography (ICA), coronary CT angiography (CCTA) has the advantages of being rapid, economical, and minimally invasive. The wide-detector CT, with its superior temporal resolution and robust three-dimensional reconstruction technology, thus enables CCTA in patients with high heart rates and arrhythmias, leading to a high potential for clinical application. This paper systematically summarizes wide-detector CT hardware configurations of various vendors routinely used for CCTA examinations and reviews the effects of patient heart rate and heart rate variability, scanning modality, reconstruction algorithms, tube voltage, and scanning field of view on image quality and radiation dose. In addition, novel technologies in the field of CT applied to CCTA examinations are also presented. Since this examination has a diagnostic accuracy that is highly consistent with ICA, it can be further used as a routine examination tool for coronary artery disease in clinical practice.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.