利用单光子发射计算机断层扫描-基于计算机断层扫描图像的放射组学和临床特征预测接受177Lu-DOTATATE治疗的患者的反应

IF 1.3 Q4 ENGINEERING, BIOMEDICAL
Journal of Medical Signals & Sensors Pub Date : 2024-10-16 eCollection Date: 2024-01-01 DOI:10.4103/jmss.jmss_54_23
Baharak Behmanesh, Akbar Abdi-Saray, Mohammad Reza Deevband, Mahasti Amoui, Hamid R Haghighatkhah, Ahmad Shalbaf
{"title":"利用单光子发射计算机断层扫描-基于计算机断层扫描图像的放射组学和临床特征预测接受177Lu-DOTATATE治疗的患者的反应","authors":"Baharak Behmanesh, Akbar Abdi-Saray, Mohammad Reza Deevband, Mahasti Amoui, Hamid R Haghighatkhah, Ahmad Shalbaf","doi":"10.4103/jmss.jmss_54_23","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In this study, we want to evaluate the response to Lutetium-177 (<sup>177</sup>Lu)-DOTATATE treatment in patients with neuroendocrine tumors (NETs) using single-photon emission computed tomography (SPECT) and computed tomography (CT), based on image-based radiomics and clinical features.</p><p><strong>Methods: </strong>The total volume of tumor areas was segmented into 61 SPECT and 41 SPECT-CT images from 22 patients with NETs. A total of 871 radiomics and clinical features were extracted from the SPECT and SPECT-CT images. Subsequently, a feature reduction method called maximum relevance minimum redundancy (mRMR) was used to select the best combination of features. These selected features were modeled using a decision tree (DT), random forest (RF), K-nearest neighbor (KNN), and support vector machine (SVM) classifiers to predict the treatment response in patients. For the SPECT and SPECT-CT images, ten and eight features, respectively, were selected using the mRMR algorithm.</p><p><strong>Results: </strong>The results revealed that the RF classifier with feature selection algorithms through mRMR had the highest classification accuracies of 64% and 83% for the SPECT and SPECT-CT images, respectively. The accuracy of the classifications of DT, KNN, and SVM for SPECT-CT images is 79%, 74%, and 67%, respectively. The poor accuracy obtained from different classifications in SPECT images (≈64%) showed that these images are not suitable for predicting treatment response.</p><p><strong>Conclusions: </strong>Modeling the selected features of SPECT-CT images based on their anatomy and the presence of extensive gray levels makes it possible to predict responses to the treatment of <sup>177</sup>Lu-DOTATATE for patients with NETs.</p>","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"14 ","pages":"28"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592923/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting the Response of Patients Treated with <sup>177</sup>Lu-DOTATATE Using Single-photon Emission Computed Tomography-Computed Tomography Image-based Radiomics and Clinical Features.\",\"authors\":\"Baharak Behmanesh, Akbar Abdi-Saray, Mohammad Reza Deevband, Mahasti Amoui, Hamid R Haghighatkhah, Ahmad Shalbaf\",\"doi\":\"10.4103/jmss.jmss_54_23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In this study, we want to evaluate the response to Lutetium-177 (<sup>177</sup>Lu)-DOTATATE treatment in patients with neuroendocrine tumors (NETs) using single-photon emission computed tomography (SPECT) and computed tomography (CT), based on image-based radiomics and clinical features.</p><p><strong>Methods: </strong>The total volume of tumor areas was segmented into 61 SPECT and 41 SPECT-CT images from 22 patients with NETs. A total of 871 radiomics and clinical features were extracted from the SPECT and SPECT-CT images. Subsequently, a feature reduction method called maximum relevance minimum redundancy (mRMR) was used to select the best combination of features. These selected features were modeled using a decision tree (DT), random forest (RF), K-nearest neighbor (KNN), and support vector machine (SVM) classifiers to predict the treatment response in patients. For the SPECT and SPECT-CT images, ten and eight features, respectively, were selected using the mRMR algorithm.</p><p><strong>Results: </strong>The results revealed that the RF classifier with feature selection algorithms through mRMR had the highest classification accuracies of 64% and 83% for the SPECT and SPECT-CT images, respectively. The accuracy of the classifications of DT, KNN, and SVM for SPECT-CT images is 79%, 74%, and 67%, respectively. The poor accuracy obtained from different classifications in SPECT images (≈64%) showed that these images are not suitable for predicting treatment response.</p><p><strong>Conclusions: </strong>Modeling the selected features of SPECT-CT images based on their anatomy and the presence of extensive gray levels makes it possible to predict responses to the treatment of <sup>177</sup>Lu-DOTATATE for patients with NETs.</p>\",\"PeriodicalId\":37680,\"journal\":{\"name\":\"Journal of Medical Signals & Sensors\",\"volume\":\"14 \",\"pages\":\"28\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592923/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Signals & Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmss.jmss_54_23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmss.jmss_54_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究背景在这项研究中,我们希望根据基于图像的放射组学和临床特征,使用单光子发射计算机断层扫描(SPECT)和计算机断层扫描(CT)评估神经内分泌肿瘤(NET)患者对Lutetium-177(177Lu)-DOTATATE治疗的反应:方法:对22名NET患者的61张SPECT和41张SPECT-CT图像的肿瘤区域总体积进行分割。从 SPECT 和 SPECT-CT 图像中共提取了 871 个放射组学和临床特征。随后,使用一种名为 "最大相关性最小冗余(mRMR)"的特征缩减方法来选择最佳特征组合。使用决策树(DT)、随机森林(RF)、K-近邻(KNN)和支持向量机(SVM)分类器对这些选定的特征进行建模,以预测患者的治疗反应。对于 SPECT 和 SPECT-CT 图像,使用 mRMR 算法分别选择了 10 个和 8 个特征:结果显示,采用 mRMR 特征选择算法的 RF 分类器对 SPECT 和 SPECT-CT 图像的分类准确率最高,分别为 64% 和 83%。DT、KNN 和 SVM 对 SPECT-CT 图像的分类准确率分别为 79%、74% 和 67%。不同分类对 SPECT 图像的准确率较低(≈64%),这表明这些图像不适合预测治疗反应:结论:根据SPECT-CT图像的解剖结构和广泛灰阶的存在情况对所选特征进行建模,可以预测NET患者对177Lu-DOTATATE治疗的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the Response of Patients Treated with 177Lu-DOTATATE Using Single-photon Emission Computed Tomography-Computed Tomography Image-based Radiomics and Clinical Features.

Background: In this study, we want to evaluate the response to Lutetium-177 (177Lu)-DOTATATE treatment in patients with neuroendocrine tumors (NETs) using single-photon emission computed tomography (SPECT) and computed tomography (CT), based on image-based radiomics and clinical features.

Methods: The total volume of tumor areas was segmented into 61 SPECT and 41 SPECT-CT images from 22 patients with NETs. A total of 871 radiomics and clinical features were extracted from the SPECT and SPECT-CT images. Subsequently, a feature reduction method called maximum relevance minimum redundancy (mRMR) was used to select the best combination of features. These selected features were modeled using a decision tree (DT), random forest (RF), K-nearest neighbor (KNN), and support vector machine (SVM) classifiers to predict the treatment response in patients. For the SPECT and SPECT-CT images, ten and eight features, respectively, were selected using the mRMR algorithm.

Results: The results revealed that the RF classifier with feature selection algorithms through mRMR had the highest classification accuracies of 64% and 83% for the SPECT and SPECT-CT images, respectively. The accuracy of the classifications of DT, KNN, and SVM for SPECT-CT images is 79%, 74%, and 67%, respectively. The poor accuracy obtained from different classifications in SPECT images (≈64%) showed that these images are not suitable for predicting treatment response.

Conclusions: Modeling the selected features of SPECT-CT images based on their anatomy and the presence of extensive gray levels makes it possible to predict responses to the treatment of 177Lu-DOTATATE for patients with NETs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Signals & Sensors
Journal of Medical Signals & Sensors ENGINEERING, BIOMEDICAL-
CiteScore
2.30
自引率
0.00%
发文量
53
审稿时长
33 weeks
期刊介绍: JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信