{"title":"多输出前馈回路共调基因中出现的时间噪声层次结构","authors":"Mintu Nandi","doi":"10.1088/1478-3975/ad9792","DOIUrl":null,"url":null,"abstract":"<p><p>Natural variations in gene expression, called noise, are fundamental to biological systems. The expression noise can be beneficial or detrimental to cellular functions. While the impact of noise on individual genes is well-established, our understanding of how noise behaves when multiple genes are co-expressed by shared regulatory elements within transcription networks remains elusive. This lack of understanding extends to how the architecture and regulatory features of these networks influence noise. To address this gap, we study the multi-output feed-forward loop motif. The motif is prevalent in bacteria and yeast and influences co-expression of multiple genes by shared transcription factors (TFs). Focusing on a two-output variant of the motif, the present study explores the interplay between its architecture, co-expression (symmetric and asymmetric) patterns of the two genes, and the associated noise dynamics. We employ a stochastic modeling approach to investigate how the binding affinities of the TFs influence symmetric and asymmetric expression patterns and the resulting noise dynamics in the co-expressed genes. This knowledge could guide the development of strategies for manipulating gene expression patterns through targeted modulation of TF binding affinities.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergence of temporal noise hierarchy in co-regulated genes of multi-output feed-forward loop.\",\"authors\":\"Mintu Nandi\",\"doi\":\"10.1088/1478-3975/ad9792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Natural variations in gene expression, called noise, are fundamental to biological systems. The expression noise can be beneficial or detrimental to cellular functions. While the impact of noise on individual genes is well-established, our understanding of how noise behaves when multiple genes are co-expressed by shared regulatory elements within transcription networks remains elusive. This lack of understanding extends to how the architecture and regulatory features of these networks influence noise. To address this gap, we study the multi-output feed-forward loop motif. The motif is prevalent in bacteria and yeast and influences co-expression of multiple genes by shared transcription factors (TFs). Focusing on a two-output variant of the motif, the present study explores the interplay between its architecture, co-expression (symmetric and asymmetric) patterns of the two genes, and the associated noise dynamics. We employ a stochastic modeling approach to investigate how the binding affinities of the TFs influence symmetric and asymmetric expression patterns and the resulting noise dynamics in the co-expressed genes. This knowledge could guide the development of strategies for manipulating gene expression patterns through targeted modulation of TF binding affinities.</p>\",\"PeriodicalId\":20207,\"journal\":{\"name\":\"Physical biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1088/1478-3975/ad9792\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/ad9792","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Emergence of temporal noise hierarchy in co-regulated genes of multi-output feed-forward loop.
Natural variations in gene expression, called noise, are fundamental to biological systems. The expression noise can be beneficial or detrimental to cellular functions. While the impact of noise on individual genes is well-established, our understanding of how noise behaves when multiple genes are co-expressed by shared regulatory elements within transcription networks remains elusive. This lack of understanding extends to how the architecture and regulatory features of these networks influence noise. To address this gap, we study the multi-output feed-forward loop motif. The motif is prevalent in bacteria and yeast and influences co-expression of multiple genes by shared transcription factors (TFs). Focusing on a two-output variant of the motif, the present study explores the interplay between its architecture, co-expression (symmetric and asymmetric) patterns of the two genes, and the associated noise dynamics. We employ a stochastic modeling approach to investigate how the binding affinities of the TFs influence symmetric and asymmetric expression patterns and the resulting noise dynamics in the co-expressed genes. This knowledge could guide the development of strategies for manipulating gene expression patterns through targeted modulation of TF binding affinities.
期刊介绍:
Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity.
Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as:
molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions
subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure
intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division
systems biology, e.g. signaling, gene regulation and metabolic networks
cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms
cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis
cell-cell interactions, cell aggregates, organoids, tissues and organs
developmental dynamics, including pattern formation and morphogenesis
physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation
neuronal systems, including information processing by networks, memory and learning
population dynamics, ecology, and evolution
collective action and emergence of collective phenomena.