{"title":"病毒模仿逃避:致癌 KRAS 突变的新角色。","authors":"Raymond Chen, Aobo He, Daniel D De Carvalho","doi":"10.1002/1878-0261.13771","DOIUrl":null,"url":null,"abstract":"<p><p>\"Viral mimicry\" refers to the induction of an innate immune response and interferon signaling by endogenous stimuli such as double-stranded RNA (dsRNA). This response has been shown to have strong cancer therapeutic potential, including by enhancing the effectiveness of immune checkpoint inhibition (ICI) therapies, and may represent a tumor suppression mechanism that needs to be overcome for malignant transformation to proceed. In a recent study, Zhou and colleagues identify KRAS, a frequently mutated oncogene, as a negative regulator of dsRNA and viral mimicry in an ICI-resistant colorectal cancer model. Oncogenic KRAS<sup>G12D</sup> mutations downregulate the RNA-binding protein DDX60 by activating the AKT signaling pathway, which inhibits STAT3, a critical transcription factor regulating DDX60 and other interferon-stimulated genes. Overexpression of DDX60, which competitively binds to dsRNA to prevent RISC-mediated degradation, or targeting of KRAS<sup>G12D</sup> elevated dsRNA levels, resulting in viral mimicry activation and potentiation of ICI treatment. These results establish KRAS as a promising target to sensitize immune \"cold\" tumors to ICI therapy and demonstrate the potential role of oncogenic mutations in viral mimicry evasion during tumorigenesis.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":"271-274"},"PeriodicalIF":6.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792985/pdf/","citationCount":"0","resultStr":"{\"title\":\"Viral mimicry evasion: a new role for oncogenic KRAS mutations.\",\"authors\":\"Raymond Chen, Aobo He, Daniel D De Carvalho\",\"doi\":\"10.1002/1878-0261.13771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>\\\"Viral mimicry\\\" refers to the induction of an innate immune response and interferon signaling by endogenous stimuli such as double-stranded RNA (dsRNA). This response has been shown to have strong cancer therapeutic potential, including by enhancing the effectiveness of immune checkpoint inhibition (ICI) therapies, and may represent a tumor suppression mechanism that needs to be overcome for malignant transformation to proceed. In a recent study, Zhou and colleagues identify KRAS, a frequently mutated oncogene, as a negative regulator of dsRNA and viral mimicry in an ICI-resistant colorectal cancer model. Oncogenic KRAS<sup>G12D</sup> mutations downregulate the RNA-binding protein DDX60 by activating the AKT signaling pathway, which inhibits STAT3, a critical transcription factor regulating DDX60 and other interferon-stimulated genes. Overexpression of DDX60, which competitively binds to dsRNA to prevent RISC-mediated degradation, or targeting of KRAS<sup>G12D</sup> elevated dsRNA levels, resulting in viral mimicry activation and potentiation of ICI treatment. These results establish KRAS as a promising target to sensitize immune \\\"cold\\\" tumors to ICI therapy and demonstrate the potential role of oncogenic mutations in viral mimicry evasion during tumorigenesis.</p>\",\"PeriodicalId\":18764,\"journal\":{\"name\":\"Molecular Oncology\",\"volume\":\" \",\"pages\":\"271-274\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792985/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/1878-0261.13771\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.13771","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Viral mimicry evasion: a new role for oncogenic KRAS mutations.
"Viral mimicry" refers to the induction of an innate immune response and interferon signaling by endogenous stimuli such as double-stranded RNA (dsRNA). This response has been shown to have strong cancer therapeutic potential, including by enhancing the effectiveness of immune checkpoint inhibition (ICI) therapies, and may represent a tumor suppression mechanism that needs to be overcome for malignant transformation to proceed. In a recent study, Zhou and colleagues identify KRAS, a frequently mutated oncogene, as a negative regulator of dsRNA and viral mimicry in an ICI-resistant colorectal cancer model. Oncogenic KRASG12D mutations downregulate the RNA-binding protein DDX60 by activating the AKT signaling pathway, which inhibits STAT3, a critical transcription factor regulating DDX60 and other interferon-stimulated genes. Overexpression of DDX60, which competitively binds to dsRNA to prevent RISC-mediated degradation, or targeting of KRASG12D elevated dsRNA levels, resulting in viral mimicry activation and potentiation of ICI treatment. These results establish KRAS as a promising target to sensitize immune "cold" tumors to ICI therapy and demonstrate the potential role of oncogenic mutations in viral mimicry evasion during tumorigenesis.
Molecular OncologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍:
Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles.
The journal is now fully Open Access with all articles published over the past 10 years freely available.