{"title":"放射医师与基于人工智能的软件:在各种图像显示条件下通过 CT 预测肺腺癌的淋巴结转移和预后","authors":"Junya Sato, Masahiro Yanagawa, Daiki Nishigaki, Akinori Hata, Yukinori Sakao, Noriaki Sakakura, Yasushi Yatabe, Yasushi Shintani, Shoji Kido, Noriyuki Tomiyama","doi":"10.1016/j.cllc.2024.10.015","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To compare the variability of quantitative values from lung adenocarcinoma CT images independently assessed by 2 radiologists and AI-based software under different display conditions, and to identify predictors of pathological lymph node metastasis (LNM), disease-free survival (DFS), and overall survival (OS).</p><p><strong>Methods: </strong>Preoperative CT images of 307 patients were displayed under 4 conditions: lung-1, lung-2, mediastinum-1, and mediastinum-2. Two radiologists (R1, R2) measured total diameter (tD) and the longest solid diameter (sD) under each condition. The AI-based software automatically detected lung nodules, providing tD, sD, total volume (tV), and solid volume (sV).</p><p><strong>Results: </strong>All measurements by R1 and R2 with AI-based software were identical. Four out of the 8 measurements showed significant variation between R1 and R2. For LNM, multivariate logistic regression identified significant indicators including sD at mediastinum-2 of R1, sD at mediastinum-1 and mediastinum-2 of R2, tV, and the proportion of sV to tV (sV/tV) of AI-based software. For DFS, multivariate Cox regression identified sD at lung-1 of R1, the proportions of sD to tD at lung-2 of R1, sD at lung-2 and mediastinum-1 of R2, tV, and sV/tV of AI-based software as significant. For OS, multivariate Cox regression identified sD at lung-1 and mediastinum-2 of R1, tD at lung-2 of R2, sD at mediastinum-1 of R2, sV, and sV/tV of AI-based software as significant.</p><p><strong>Conclusion: </strong>Radiologists' CT measurements were significant predictors of LNM and prognosis, but variability existed among radiologists and display conditions. AI-based software can provide accurate and reproducible indicators for predicting LNM and prognosis.</p>","PeriodicalId":10490,"journal":{"name":"Clinical lung cancer","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiologists Versus AI-Based Software: Predicting Lymph Node Metastasis and Prognosis in Lung Adenocarcinoma From CT Under Various Image Display Conditions.\",\"authors\":\"Junya Sato, Masahiro Yanagawa, Daiki Nishigaki, Akinori Hata, Yukinori Sakao, Noriaki Sakakura, Yasushi Yatabe, Yasushi Shintani, Shoji Kido, Noriyuki Tomiyama\",\"doi\":\"10.1016/j.cllc.2024.10.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To compare the variability of quantitative values from lung adenocarcinoma CT images independently assessed by 2 radiologists and AI-based software under different display conditions, and to identify predictors of pathological lymph node metastasis (LNM), disease-free survival (DFS), and overall survival (OS).</p><p><strong>Methods: </strong>Preoperative CT images of 307 patients were displayed under 4 conditions: lung-1, lung-2, mediastinum-1, and mediastinum-2. Two radiologists (R1, R2) measured total diameter (tD) and the longest solid diameter (sD) under each condition. The AI-based software automatically detected lung nodules, providing tD, sD, total volume (tV), and solid volume (sV).</p><p><strong>Results: </strong>All measurements by R1 and R2 with AI-based software were identical. Four out of the 8 measurements showed significant variation between R1 and R2. For LNM, multivariate logistic regression identified significant indicators including sD at mediastinum-2 of R1, sD at mediastinum-1 and mediastinum-2 of R2, tV, and the proportion of sV to tV (sV/tV) of AI-based software. For DFS, multivariate Cox regression identified sD at lung-1 of R1, the proportions of sD to tD at lung-2 of R1, sD at lung-2 and mediastinum-1 of R2, tV, and sV/tV of AI-based software as significant. For OS, multivariate Cox regression identified sD at lung-1 and mediastinum-2 of R1, tD at lung-2 of R2, sD at mediastinum-1 of R2, sV, and sV/tV of AI-based software as significant.</p><p><strong>Conclusion: </strong>Radiologists' CT measurements were significant predictors of LNM and prognosis, but variability existed among radiologists and display conditions. AI-based software can provide accurate and reproducible indicators for predicting LNM and prognosis.</p>\",\"PeriodicalId\":10490,\"journal\":{\"name\":\"Clinical lung cancer\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical lung cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cllc.2024.10.015\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical lung cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.cllc.2024.10.015","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Radiologists Versus AI-Based Software: Predicting Lymph Node Metastasis and Prognosis in Lung Adenocarcinoma From CT Under Various Image Display Conditions.
Purpose: To compare the variability of quantitative values from lung adenocarcinoma CT images independently assessed by 2 radiologists and AI-based software under different display conditions, and to identify predictors of pathological lymph node metastasis (LNM), disease-free survival (DFS), and overall survival (OS).
Methods: Preoperative CT images of 307 patients were displayed under 4 conditions: lung-1, lung-2, mediastinum-1, and mediastinum-2. Two radiologists (R1, R2) measured total diameter (tD) and the longest solid diameter (sD) under each condition. The AI-based software automatically detected lung nodules, providing tD, sD, total volume (tV), and solid volume (sV).
Results: All measurements by R1 and R2 with AI-based software were identical. Four out of the 8 measurements showed significant variation between R1 and R2. For LNM, multivariate logistic regression identified significant indicators including sD at mediastinum-2 of R1, sD at mediastinum-1 and mediastinum-2 of R2, tV, and the proportion of sV to tV (sV/tV) of AI-based software. For DFS, multivariate Cox regression identified sD at lung-1 of R1, the proportions of sD to tD at lung-2 of R1, sD at lung-2 and mediastinum-1 of R2, tV, and sV/tV of AI-based software as significant. For OS, multivariate Cox regression identified sD at lung-1 and mediastinum-2 of R1, tD at lung-2 of R2, sD at mediastinum-1 of R2, sV, and sV/tV of AI-based software as significant.
Conclusion: Radiologists' CT measurements were significant predictors of LNM and prognosis, but variability existed among radiologists and display conditions. AI-based software can provide accurate and reproducible indicators for predicting LNM and prognosis.
期刊介绍:
Clinical Lung Cancer is a peer-reviewed bimonthly journal that publishes original articles describing various aspects of clinical and translational research of lung cancer. Clinical Lung Cancer is devoted to articles on detection, diagnosis, prevention, and treatment of lung cancer. The main emphasis is on recent scientific developments in all areas related to lung cancer. Specific areas of interest include clinical research and mechanistic approaches; drug sensitivity and resistance; gene and antisense therapy; pathology, markers, and prognostic indicators; chemoprevention strategies; multimodality therapy; and integration of various approaches.