{"title":"2 型糖尿病患者尿液外泌体 MicroRNA-183-5p 和 MicroRNA-125a-5p 水平的变化","authors":"Yixuan Fang, Shiyi Sun, Jing Wu, Guanjian Liu, Qinqin Wu, Xingwu Ran","doi":"10.3390/biomedicines12112608","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Type 2 diabetes mellitus (T2DM) is a metabolic disorder, and urinary exosomal microRNAs (miRNAs) were utilized as potential disease prediction or diagnostic biomarkers in numerous studies. This study investigated the differential expression of urinary exosomal miRNAs between non-diabetes mellitus (NDM) individuals and those with T2DM. <b>Aim:</b> To elucidate the association between urinary exosomal miRNAs and T2DM. <b>Methods</b>: We recruited patients diagnosed with T2DM and NDM individuals in West China Hospital, Sichuan University, from November 2023 to February 2024. Subsequently, we performed sequencing of urinary exosomal microRNAs in both groups. The obtained sequencing results were further validated using RT-qPCR in both the training set and the validation set. Additionally, we conducted logistic regression analysis and Spearman correlation analysis on miRNAs with significant differential expression, as well as analysis of their biological functions. <b>Results</b>: A total of 118 urine samples were collected, 59 from individuals diagnosed with T2DM and 59 from NDM. There were differentially expressed miR-183-5p (<i>p</i> = 0.034) and miR-125a-5p (<i>p</i> = 0.008) between the two groups. Furthermore, multivariate regression analysis demonstrated that higher miR-125a-5p levels were negatively associated with the risk of T2DM (<i>p</i> = 0.044; OR: 0.046; 95% CI: 0.002, 0.922). Bioinformatics analysis indicated that the target genes of miR-183-5p were predominantly involved in insulin signaling and glucose transport processes, while those target genes of miR-125a-5p primarily mediated autophagy. <b>Conclusions</b>: miR-183-5p and miR-125a-5p might be involved in the pathogenesis of T2DM, while higher urinary exosomal miR-125a-5p was negatively associated with the risk of T2DM.</p>","PeriodicalId":8937,"journal":{"name":"Biomedicines","volume":"12 11","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591879/pdf/","citationCount":"0","resultStr":"{\"title\":\"Alterations in the Levels of Urinary Exosomal MicroRNA-183-5p and MicroRNA-125a-5p in Individuals with Type 2 Diabetes Mellitus.\",\"authors\":\"Yixuan Fang, Shiyi Sun, Jing Wu, Guanjian Liu, Qinqin Wu, Xingwu Ran\",\"doi\":\"10.3390/biomedicines12112608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Type 2 diabetes mellitus (T2DM) is a metabolic disorder, and urinary exosomal microRNAs (miRNAs) were utilized as potential disease prediction or diagnostic biomarkers in numerous studies. This study investigated the differential expression of urinary exosomal miRNAs between non-diabetes mellitus (NDM) individuals and those with T2DM. <b>Aim:</b> To elucidate the association between urinary exosomal miRNAs and T2DM. <b>Methods</b>: We recruited patients diagnosed with T2DM and NDM individuals in West China Hospital, Sichuan University, from November 2023 to February 2024. Subsequently, we performed sequencing of urinary exosomal microRNAs in both groups. The obtained sequencing results were further validated using RT-qPCR in both the training set and the validation set. Additionally, we conducted logistic regression analysis and Spearman correlation analysis on miRNAs with significant differential expression, as well as analysis of their biological functions. <b>Results</b>: A total of 118 urine samples were collected, 59 from individuals diagnosed with T2DM and 59 from NDM. There were differentially expressed miR-183-5p (<i>p</i> = 0.034) and miR-125a-5p (<i>p</i> = 0.008) between the two groups. Furthermore, multivariate regression analysis demonstrated that higher miR-125a-5p levels were negatively associated with the risk of T2DM (<i>p</i> = 0.044; OR: 0.046; 95% CI: 0.002, 0.922). Bioinformatics analysis indicated that the target genes of miR-183-5p were predominantly involved in insulin signaling and glucose transport processes, while those target genes of miR-125a-5p primarily mediated autophagy. <b>Conclusions</b>: miR-183-5p and miR-125a-5p might be involved in the pathogenesis of T2DM, while higher urinary exosomal miR-125a-5p was negatively associated with the risk of T2DM.</p>\",\"PeriodicalId\":8937,\"journal\":{\"name\":\"Biomedicines\",\"volume\":\"12 11\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591879/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedicines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomedicines12112608\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomedicines12112608","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Alterations in the Levels of Urinary Exosomal MicroRNA-183-5p and MicroRNA-125a-5p in Individuals with Type 2 Diabetes Mellitus.
Background: Type 2 diabetes mellitus (T2DM) is a metabolic disorder, and urinary exosomal microRNAs (miRNAs) were utilized as potential disease prediction or diagnostic biomarkers in numerous studies. This study investigated the differential expression of urinary exosomal miRNAs between non-diabetes mellitus (NDM) individuals and those with T2DM. Aim: To elucidate the association between urinary exosomal miRNAs and T2DM. Methods: We recruited patients diagnosed with T2DM and NDM individuals in West China Hospital, Sichuan University, from November 2023 to February 2024. Subsequently, we performed sequencing of urinary exosomal microRNAs in both groups. The obtained sequencing results were further validated using RT-qPCR in both the training set and the validation set. Additionally, we conducted logistic regression analysis and Spearman correlation analysis on miRNAs with significant differential expression, as well as analysis of their biological functions. Results: A total of 118 urine samples were collected, 59 from individuals diagnosed with T2DM and 59 from NDM. There were differentially expressed miR-183-5p (p = 0.034) and miR-125a-5p (p = 0.008) between the two groups. Furthermore, multivariate regression analysis demonstrated that higher miR-125a-5p levels were negatively associated with the risk of T2DM (p = 0.044; OR: 0.046; 95% CI: 0.002, 0.922). Bioinformatics analysis indicated that the target genes of miR-183-5p were predominantly involved in insulin signaling and glucose transport processes, while those target genes of miR-125a-5p primarily mediated autophagy. Conclusions: miR-183-5p and miR-125a-5p might be involved in the pathogenesis of T2DM, while higher urinary exosomal miR-125a-5p was negatively associated with the risk of T2DM.
BiomedicinesBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
5.20
自引率
8.50%
发文量
2823
审稿时长
8 weeks
期刊介绍:
Biomedicines (ISSN 2227-9059; CODEN: BIOMID) is an international, scientific, open access journal on biomedicines published quarterly online by MDPI.