具有兼容性边界条件的曲线网格上的高阶精确赫米特方案

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Allen Alvarez Loya , Daniel Appelö , William D. Henshaw
{"title":"具有兼容性边界条件的曲线网格上的高阶精确赫米特方案","authors":"Allen Alvarez Loya ,&nbsp;Daniel Appelö ,&nbsp;William D. Henshaw","doi":"10.1016/j.jcp.2024.113597","DOIUrl":null,"url":null,"abstract":"<div><div>High order accurate Hermite methods for the wave equation on curvilinear domains are presented. Boundaries are treated using centered compatibility conditions rather than more standard one-sided approximations. Both first-order-in-time (FOT) and second-order-in-time (SOT) Hermite schemes are developed. Hermite methods use the solution and multiple derivatives as unknowns and achieve space-time orders of accuracy <span><math><mn>2</mn><mi>m</mi><mo>−</mo><mn>1</mn></math></span> (FOT) and 2<em>m</em> (SOT) for methods using <span><math><msup><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span> degree of freedom per node in <em>d</em> dimensions. The compatibility boundary conditions (CBCs) are based on taking time derivatives of the boundary conditions and using the governing equations to replace the time derivatives with spatial derivatives. These resulting constraint equations augment the Hermite scheme on the boundary. The solvability of the equations resulting from the compatibility conditions is analyzed. Numerical examples demonstrate the accuracy and stability of the new schemes in two dimensions.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"522 ","pages":"Article 113597"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High order accurate Hermite schemes on curvilinear grids with compatibility boundary conditions\",\"authors\":\"Allen Alvarez Loya ,&nbsp;Daniel Appelö ,&nbsp;William D. Henshaw\",\"doi\":\"10.1016/j.jcp.2024.113597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High order accurate Hermite methods for the wave equation on curvilinear domains are presented. Boundaries are treated using centered compatibility conditions rather than more standard one-sided approximations. Both first-order-in-time (FOT) and second-order-in-time (SOT) Hermite schemes are developed. Hermite methods use the solution and multiple derivatives as unknowns and achieve space-time orders of accuracy <span><math><mn>2</mn><mi>m</mi><mo>−</mo><mn>1</mn></math></span> (FOT) and 2<em>m</em> (SOT) for methods using <span><math><msup><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span> degree of freedom per node in <em>d</em> dimensions. The compatibility boundary conditions (CBCs) are based on taking time derivatives of the boundary conditions and using the governing equations to replace the time derivatives with spatial derivatives. These resulting constraint equations augment the Hermite scheme on the boundary. The solvability of the equations resulting from the compatibility conditions is analyzed. Numerical examples demonstrate the accuracy and stability of the new schemes in two dimensions.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"522 \",\"pages\":\"Article 113597\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124008453\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124008453","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

介绍了曲线域上波浪方程的高阶精确赫米特方法。在处理边界时,使用了居中相容条件,而不是更标准的单边近似。同时开发了一阶在时 (FOT) 和二阶在时 (SOT) Hermite 方案。赫米特方法使用解和多重导数作为未知数,在 d 维中使用 (m+1)d 个自由度的每个节点的方法中,达到 2m-1 (FOT) 和 2m (SOT) 的时空精度阶数。兼容性边界条件 (CBC) 基于边界条件的时间导数,并使用控制方程将时间导数替换为空间导数。由此产生的约束方程增强了边界上的 Hermite 方案。分析了相容条件所产生的方程的可解性。数值示例证明了新方案在二维领域的准确性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High order accurate Hermite schemes on curvilinear grids with compatibility boundary conditions
High order accurate Hermite methods for the wave equation on curvilinear domains are presented. Boundaries are treated using centered compatibility conditions rather than more standard one-sided approximations. Both first-order-in-time (FOT) and second-order-in-time (SOT) Hermite schemes are developed. Hermite methods use the solution and multiple derivatives as unknowns and achieve space-time orders of accuracy 2m1 (FOT) and 2m (SOT) for methods using (m+1)d degree of freedom per node in d dimensions. The compatibility boundary conditions (CBCs) are based on taking time derivatives of the boundary conditions and using the governing equations to replace the time derivatives with spatial derivatives. These resulting constraint equations augment the Hermite scheme on the boundary. The solvability of the equations resulting from the compatibility conditions is analyzed. Numerical examples demonstrate the accuracy and stability of the new schemes in two dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信