关于惠特尼强嵌入定理的等距版本

IF 1.5 1区 数学 Q1 MATHEMATICS
Wentao Cao , László Székelyhidi Jr.
{"title":"关于惠特尼强嵌入定理的等距版本","authors":"Wentao Cao ,&nbsp;László Székelyhidi Jr.","doi":"10.1016/j.aim.2024.110040","DOIUrl":null,"url":null,"abstract":"<div><div>We prove a version of Whitney's strong embedding theorem for isometric embeddings within the general setting of the Nash-Kuiper h-principle. More precisely, we show that any <em>n</em>-dimensional smooth compact manifold admits infinitely many global isometric embeddings into 2<em>n</em>-dimensional Euclidean space, of Hölder class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>θ</mi></mrow></msup></math></span> with <span><math><mi>θ</mi><mo>&lt;</mo><mn>1</mn><mo>/</mo><mn>3</mn></math></span> for <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>θ</mi><mo>&lt;</mo><msup><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>. The proof is performed by Nash-Kuiper's convex integration construction and applying the gluing technique of the authors on short embeddings with small amplitude.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"460 ","pages":"Article 110040"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the isometric version of Whitney's strong embedding theorem\",\"authors\":\"Wentao Cao ,&nbsp;László Székelyhidi Jr.\",\"doi\":\"10.1016/j.aim.2024.110040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove a version of Whitney's strong embedding theorem for isometric embeddings within the general setting of the Nash-Kuiper h-principle. More precisely, we show that any <em>n</em>-dimensional smooth compact manifold admits infinitely many global isometric embeddings into 2<em>n</em>-dimensional Euclidean space, of Hölder class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>θ</mi></mrow></msup></math></span> with <span><math><mi>θ</mi><mo>&lt;</mo><mn>1</mn><mo>/</mo><mn>3</mn></math></span> for <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>θ</mi><mo>&lt;</mo><msup><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>. The proof is performed by Nash-Kuiper's convex integration construction and applying the gluing technique of the authors on short embeddings with small amplitude.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"460 \",\"pages\":\"Article 110040\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824005565\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824005565","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了惠特尼强嵌入定理的一个版本,即在纳什-柯伊伯 h 原则的一般环境中的等距嵌入。更确切地说,我们证明了任何 n 维光滑紧凑流形都有无穷多个全局等距嵌入到 2n 维欧几里得空间中,其中荷尔德类 C1,θ 在 n=2 时为 θ<1/3,在 n≥3 时为 θ<(n+2)-1。证明是通过纳什-柯伊伯的凸积分构造和作者对小振幅短嵌入的胶合技术进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the isometric version of Whitney's strong embedding theorem
We prove a version of Whitney's strong embedding theorem for isometric embeddings within the general setting of the Nash-Kuiper h-principle. More precisely, we show that any n-dimensional smooth compact manifold admits infinitely many global isometric embeddings into 2n-dimensional Euclidean space, of Hölder class C1,θ with θ<1/3 for n=2 and θ<(n+2)1 for n3. The proof is performed by Nash-Kuiper's convex integration construction and applying the gluing technique of the authors on short embeddings with small amplitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信