{"title":"关于惠特尼强嵌入定理的等距版本","authors":"Wentao Cao , László Székelyhidi Jr.","doi":"10.1016/j.aim.2024.110040","DOIUrl":null,"url":null,"abstract":"<div><div>We prove a version of Whitney's strong embedding theorem for isometric embeddings within the general setting of the Nash-Kuiper h-principle. More precisely, we show that any <em>n</em>-dimensional smooth compact manifold admits infinitely many global isometric embeddings into 2<em>n</em>-dimensional Euclidean space, of Hölder class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>θ</mi></mrow></msup></math></span> with <span><math><mi>θ</mi><mo><</mo><mn>1</mn><mo>/</mo><mn>3</mn></math></span> for <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>θ</mi><mo><</mo><msup><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>. The proof is performed by Nash-Kuiper's convex integration construction and applying the gluing technique of the authors on short embeddings with small amplitude.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"460 ","pages":"Article 110040"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the isometric version of Whitney's strong embedding theorem\",\"authors\":\"Wentao Cao , László Székelyhidi Jr.\",\"doi\":\"10.1016/j.aim.2024.110040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove a version of Whitney's strong embedding theorem for isometric embeddings within the general setting of the Nash-Kuiper h-principle. More precisely, we show that any <em>n</em>-dimensional smooth compact manifold admits infinitely many global isometric embeddings into 2<em>n</em>-dimensional Euclidean space, of Hölder class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>θ</mi></mrow></msup></math></span> with <span><math><mi>θ</mi><mo><</mo><mn>1</mn><mo>/</mo><mn>3</mn></math></span> for <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>θ</mi><mo><</mo><msup><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>. The proof is performed by Nash-Kuiper's convex integration construction and applying the gluing technique of the authors on short embeddings with small amplitude.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"460 \",\"pages\":\"Article 110040\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824005565\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824005565","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了惠特尼强嵌入定理的一个版本,即在纳什-柯伊伯 h 原则的一般环境中的等距嵌入。更确切地说,我们证明了任何 n 维光滑紧凑流形都有无穷多个全局等距嵌入到 2n 维欧几里得空间中,其中荷尔德类 C1,θ 在 n=2 时为 θ<1/3,在 n≥3 时为 θ<(n+2)-1。证明是通过纳什-柯伊伯的凸积分构造和作者对小振幅短嵌入的胶合技术进行的。
On the isometric version of Whitney's strong embedding theorem
We prove a version of Whitney's strong embedding theorem for isometric embeddings within the general setting of the Nash-Kuiper h-principle. More precisely, we show that any n-dimensional smooth compact manifold admits infinitely many global isometric embeddings into 2n-dimensional Euclidean space, of Hölder class with for and for . The proof is performed by Nash-Kuiper's convex integration construction and applying the gluing technique of the authors on short embeddings with small amplitude.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.