里奇曲率自下而上有界的可能坍缩空间的里奇曲率积分界值

IF 0.6 4区 数学 Q3 MATHEMATICS
Michael Smith
{"title":"里奇曲率自下而上有界的可能坍缩空间的里奇曲率积分界值","authors":"Michael Smith","doi":"10.1016/j.difgeo.2024.102214","DOIUrl":null,"url":null,"abstract":"<div><div>Assuming a lower bound on the Ricci curvature of a complete Riemannian manifold, for <span><math><mi>q</mi><mo>&lt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> we show the existence of bounds on the local <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> norm of the Ricci curvature that depend only on the dimension and which improve with volume collapse.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"98 ","pages":"Article 102214"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral Ricci curvature bounds for possibly collapsed spaces with Ricci curvature bounded from below\",\"authors\":\"Michael Smith\",\"doi\":\"10.1016/j.difgeo.2024.102214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Assuming a lower bound on the Ricci curvature of a complete Riemannian manifold, for <span><math><mi>q</mi><mo>&lt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> we show the existence of bounds on the local <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> norm of the Ricci curvature that depend only on the dimension and which improve with volume collapse.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"98 \",\"pages\":\"Article 102214\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524001074\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524001074","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假定完整黎曼流形的黎奇曲率有一个下限,对于 q<1/2,我们证明了黎奇曲率的局部 Lq norm 的边界存在,这些边界只取决于维数,并且随着体积塌缩而改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integral Ricci curvature bounds for possibly collapsed spaces with Ricci curvature bounded from below
Assuming a lower bound on the Ricci curvature of a complete Riemannian manifold, for q<1/2 we show the existence of bounds on the local Lq norm of the Ricci curvature that depend only on the dimension and which improve with volume collapse.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信