{"title":"非负保留卷积核。应用于闭凸域中的随机伏特拉方程及其近似方法","authors":"Aurélien Alfonsi","doi":"10.1016/j.spa.2024.104535","DOIUrl":null,"url":null,"abstract":"<div><div>This work defines and studies one-dimensional convolution kernels that preserve nonnegativity. When the past dynamics of a process is integrated with a convolution kernel like in Stochastic Volterra Equations or in the jump intensity of Hawkes processes, this property allows to get the nonnegativity of the integral. We give characterizations of these kernels and show in particular that completely monotone kernels preserve nonnegativity. We then apply these results to analyze the stochastic invariance of a closed convex set by Stochastic Volterra Equations. We also get a comparison result in dimension one. Last, when the kernel is a positive linear combination of decaying exponential functions, we present a second order approximation scheme for the weak error that stays in the closed convex domain under suitable assumptions. We apply these results to the rough Heston model and give numerical illustrations.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"181 ","pages":"Article 104535"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonnegativity preserving convolution kernels. Application to Stochastic Volterra Equations in closed convex domains and their approximation\",\"authors\":\"Aurélien Alfonsi\",\"doi\":\"10.1016/j.spa.2024.104535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work defines and studies one-dimensional convolution kernels that preserve nonnegativity. When the past dynamics of a process is integrated with a convolution kernel like in Stochastic Volterra Equations or in the jump intensity of Hawkes processes, this property allows to get the nonnegativity of the integral. We give characterizations of these kernels and show in particular that completely monotone kernels preserve nonnegativity. We then apply these results to analyze the stochastic invariance of a closed convex set by Stochastic Volterra Equations. We also get a comparison result in dimension one. Last, when the kernel is a positive linear combination of decaying exponential functions, we present a second order approximation scheme for the weak error that stays in the closed convex domain under suitable assumptions. We apply these results to the rough Heston model and give numerical illustrations.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"181 \",\"pages\":\"Article 104535\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924002436\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924002436","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Nonnegativity preserving convolution kernels. Application to Stochastic Volterra Equations in closed convex domains and their approximation
This work defines and studies one-dimensional convolution kernels that preserve nonnegativity. When the past dynamics of a process is integrated with a convolution kernel like in Stochastic Volterra Equations or in the jump intensity of Hawkes processes, this property allows to get the nonnegativity of the integral. We give characterizations of these kernels and show in particular that completely monotone kernels preserve nonnegativity. We then apply these results to analyze the stochastic invariance of a closed convex set by Stochastic Volterra Equations. We also get a comparison result in dimension one. Last, when the kernel is a positive linear combination of decaying exponential functions, we present a second order approximation scheme for the weak error that stays in the closed convex domain under suitable assumptions. We apply these results to the rough Heston model and give numerical illustrations.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.